精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,若a1=2,n•an+1=Sn+n(n+1),
(1)证明数列{an}为等差数列,并求其通项公式;
(2)令Tn=
Sn
2n
,①当n为何正整数值时,Tn>Tn+1
②若对一切正整数n,总有Tn≤m,求m的取值范围.
考点:等差数列的性质
专题:综合题,等差数列与等比数列
分析:(1)利用n•an+1=Sn+n(n+1),再写一式两式相减,即可证明数列{an}为首项为2,公差为2的等差数列,从而可求其通项公式;
(2)①利用Tn>Tn+1,即可求出n的值;
②确定各项中数值最大为
3
2
,从而求m的取值范围.
解答: (1)证明:令n=1时,1•a2=S1+1•2,即a2-a1=2,
∵n•an+1=Sn+n(n+1),
∴n≥2时,(n-1)•an=Sn-1+n(n-1),
两式相减整理得:an+1-an=2,
∵a1=2,
∴数列{an}为首项为2,公差为2的等差数列,
∴an=2n;
(2)解:①Tn=
Sn
2n
=
n(n+1)
2n
>Tn+1=
(n+1)(n+2)
2n+1

∴n>2;
②∵T1=1,T2=T3=
3
2
,Tn>Tn+1
∴各项中数值最大为
3
2

∵对一切正整数n,总有Tn≤m,
∴m≥
3
2
点评:本题考查等差数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在复平面内,复数i(i+1)的虚部为(  )
A、-1B、1
C、iD、i2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在(
x
+
3x
n(其中n<15)的展开式中:
(1)求二项式展开式中各项系数之和;
(2)若展开式中第9项,第10项,第11项的二项式系数成等差数列,求n的值;
(3)在(2)的条件下写出它展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75,
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为X,求随机变量X的分布列,均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用综合法证明:a+b+c≥
ab
+
bc
+
ca
(a,b,c∈R+
(2)若下列方程:x2=4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,至少有一个方程有实根,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,若a2=9,a5=3,
(Ⅰ)求数列{an}的通项公式;       
(Ⅱ)求Sn达到最大值及此时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2e1-x-a(x-1)
(Ⅰ)求φ(x)=f(x)+a(x-1)的单调递增区间;
(Ⅱ)当a=1时,求f(x)在(
3
4
,2)上的最大值;
(Ⅲ)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两个极值点x1,x2(x1<x2)时,总有x2g(x1)≤λf(x1),求实数λ的值.(f′(x)为f(x)的导函数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x,y)为函数y=1+lnx图象上一点,O为坐标原点,记直线OP的斜率k=f(x).
(1)若函数f(x)在区间(m,m+
1
3
)(m>0)上存在极值,求实数m的取值范围;
(2)当x≥1时,不等式f(x)≥
t
x+1
恒成立,求实数t的取值范围;
(3)求证:
n
i=1
ln[i•(i+1)]>n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公比为q的等比数列,Sn是它的前n项和,证明:数列{Sn}不是等比数列.

查看答案和解析>>

同步练习册答案