精英家教网 > 高中数学 > 题目详情
(1)用综合法证明:a+b+c≥
ab
+
bc
+
ca
(a,b,c∈R+
(2)若下列方程:x2=4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,至少有一个方程有实根,试求实数a的取值范围.
考点:反证法与放缩法,综合法与分析法(选修)
专题:选作题,反证法,不等式的解法及应用
分析:(1)利用2(a+b+c)-2(
ab
+
bc
+
ca
)=(
a
-
b
2+(
b
-
c
2+(
c
-
a
2≥0,可得结论;
(2)至少有一个方程有实根的对立面是三个方程都没有根,由于正面解决此问题分类较多,而其对立面情况单一,故求解此类问题一般先假设没有一个方程有实数根,然后由根的判别式解得三方程都没有根的实数a的取值范围,其补集即为个方程 x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根成立的实数a的取值范围.此种方法称为反证法
解答: (1)证明:由于2(a+b+c)-2(
ab
+
bc
+
ca
)=(
a
-
b
2+(
b
-
c
2+(
c
-
a
2≥0,
∴2(a+b+c)≥2(
ab
+
bc
+
ca
),
∴a+b+c≥
ab
+
bc
+
ca

(2)解:假设没有一个方程有实数根,则:
16a2-4(3-4a)<0(1)
(a-1)2-4a2<0(2)
4a2+8a<0(3)
解之得:-1.5<a<-1
故三个方程至少有一个方程有实根的a的取值范围是:{a|a≥-1或a≤-1.5}.
点评:本题主要考查用综合法(由因导果)证明不等式、考查反证法,用反证法证明数学命题,推出矛盾,是解题的关键和难点.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面为正方形,侧面PAD与底面ABCD垂直,M为底面所在平面内的一个动点,若动点M到点C的距离等于点M到面PAD的距离,则动点M的轨迹为(  )
A、椭圆B、抛物线
C、双曲线D、直线

查看答案和解析>>

科目:高中数学 来源: 题型:

袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.
(1)写出所有不同的结果;
(2)求恰好摸出1个黑球和1个红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+x2,h(x)=x2-2ax-2alnx
(1)若x=1是函数h(x)的极值点,求a的值;
(2)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围;
(3)在(2)的条件下,若a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+2x<0},B={x|y=
x+1
}
(1)求A∪B,(∁RA)∩B
(2)若集合C={x|2a<x<a+1}且C⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,若a1=2,n•an+1=Sn+n(n+1),
(1)证明数列{an}为等差数列,并求其通项公式;
(2)令Tn=
Sn
2n
,①当n为何正整数值时,Tn>Tn+1
②若对一切正整数n,总有Tn≤m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知5个乒乓球,其中3个新的,2个旧的,每次取1个,不放回的取两次,求:
(1)第一次取到新球的概率.
(2)第二次取到新球的概率.
(3)在第一次取到新球的条件下第二次取到新球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x+1
,若数列{an}(n∈N*)满足:a1=1,an+1=f(an
(1)设bn=
1
an
,求证数列{bn}是等差数列;
(2)求数列{an}的通项公式;
(3)设数列{cn}满足:cn=
2n
an
,求数列{cn}的前n项的和Sn

查看答案和解析>>

同步练习册答案