精英家教网 > 高中数学 > 题目详情
已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.
考点:利用导数研究函数的极值
专题:导数的概念及应用
分析:先求出函数的导数,列出方程组解出a,b的值,再通过讨论从而确定a,b的值.
解答: 解:∵f(x)在x=-1时有极值0,
且f′(x)=3x2+6ax+b,
f(-1)=0
f(-1)=0
,即
3-6a+b=0
-1+3a-b+a2=0

解得:
a=1
b=3
,或
a=2
b=9

当a=1,b=3时,
f′(x)=3x2+6x+3=3(x+1)2≥0,
∴f(x)在R上为增函数,无极值,故舍去.
当a=2,b=9时,
f′(x)=3x2+12x+9=3(x+1)(x+3),
当x∈(-∞,-3)时,f(x)为增函数;
当x∈(-3,-1)时,f(x)为减函数;
当x∈(-1,+∞)时,f(x)为增函数;
∴f(x)在x=-1时取得极小值.
∴a=2,b=9.
点评:本题考察了利用导数研究函数的单调性,函数的极值问题,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:△ABC的三个内角A、B、C的对边分别为a、b、c,且满足cos2B-cos(A+C)=0.
(1)求角B的大小;
(2)若sinA=4sinC,△ABC的面积为
3
,求b边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用综合法证明:a+b+c≥
ab
+
bc
+
ca
(a,b,c∈R+
(2)若下列方程:x2=4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,至少有一个方程有实根,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2e1-x-a(x-1)
(Ⅰ)求φ(x)=f(x)+a(x-1)的单调递增区间;
(Ⅱ)当a=1时,求f(x)在(
3
4
,2)上的最大值;
(Ⅲ)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两个极值点x1,x2(x1<x2)时,总有x2g(x1)≤λf(x1),求实数λ的值.(f′(x)为f(x)的导函数)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x-lnx
(1)求y=f(x)的单调区间;
(2)若g(x)=x-alnx在[1,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x,y)为函数y=1+lnx图象上一点,O为坐标原点,记直线OP的斜率k=f(x).
(1)若函数f(x)在区间(m,m+
1
3
)(m>0)上存在极值,求实数m的取值范围;
(2)当x≥1时,不等式f(x)≥
t
x+1
恒成立,求实数t的取值范围;
(3)求证:
n
i=1
ln[i•(i+1)]>n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(2x+
3
n展开式的二项式系数之和比(
x
+
1
2
4x
2n展开式的二项式系数之和小240.
(1)求(
x
+
1
2
4x
2n展开式中所有的x的有理项;
(2)若(2x+
3
n=a0+a1x+a2x2+a3x3+…+anxn,求(a0+a2+a42-(a1+a32值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x-2sin2x
(1)求f(x)的最大值及取得最大值时x取值的集合;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a(x-1)
x+1
,a∈R.
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围.

查看答案和解析>>

同步练习册答案