精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2+2x<0},B={x|y=
x+1
}
(1)求A∪B,(∁RA)∩B
(2)若集合C={x|2a<x<a+1}且C⊆A,求a的取值范围.
考点:集合的包含关系判断及应用
专题:集合
分析:(1)先由条件求得集合A和B,再根据两个集合的交集、并集、集合的补集的定义,求得 A∪B和(∁RA)∩B.
(2)由题意可得,①当2a≥a+1;或②2a<a+1,且2a≥-2,且a+1≤0.分别求得a的范围,综合可得结论.
解答: 解:(1)∵集合A={x|x2+2x<0}={x|-2<x<0},B={x|y=
x+1
}={x|x≥-1},
∴A∪B={x|x≥-2}.
再根据∁RA={x|x≤-2,或 x≥0},可得(∁RA)∩B={x|x≥0}.
(2)∵集合C={x|2a<x<a+1}且C⊆A,
∴①当2a≥a+1,即当a≥1时,C=∅,满足C⊆A.
②当2a<a+1,即a<1时,则由2a≥-2,且a+1≤0,求得a=-1.
综上可得,a的范围为{a|a≥1,或a=-1}.
点评:本题主要考查一元二次不等式的解法,集合间的包含关系的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ=
3
5
,且cosθ<0,则tanθ等于(  )
A、-
3
4
B、
3
4
C、-3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
1
1×4
1
4×7
1
7×10
,…,
1
(3n-2)(3n+1)
的前n项和为Sn
(1)计算S1,S2,S3,S4,根据计算结果,猜想Sn的表达式,并用数学归纳法进行证明;
(2)试用其它方法求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(0,2),求它与曲线y=x3相切的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

把四进制数2132化为七进制数
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用综合法证明:a+b+c≥
ab
+
bc
+
ca
(a,b,c∈R+
(2)若下列方程:x2=4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,至少有一个方程有实根,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0.
(1)若a>0,求
b
a
的取值范围;
(2)判断方程f(x)=0在(0,1)内实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x-lnx
(1)求y=f(x)的单调区间;
(2)若g(x)=x-alnx在[1,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2+ax-2a2+3a)•ex,其中a∈R.
(1)是否存在实数a,使得函数y=f(x)在R上单调递增?若存在,求出的a值或取值范围;否则,请说明理由.
(2)若a<0,且函数y=f(x)的极小值为-
3
2
e,求函数的极大值.

查看答案和解析>>

同步练习册答案