精英家教网 > 高中数学 > 题目详情
把四进制数2132化为七进制数
 
考点:进位制
专题:算法和程序框图
分析:先将“五进制”数化为十进制数,然后将所得十进制的化为七进制,即可得到结论.
解答: 解:先将“四进制”数2132(5)化为十进制数为2×43+1×42+3×41+2×40=158(10)
然后将十进制的158化为七进制:
158÷7=22余4,
22÷7=3余1,
3÷7=0余3,
所以,结果是314(7)
故答案为:314(7)
点评:本题考查的知识点是五进制、十进制与七进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C的对边分别为a,b,c,已知点D是边BC的中点,且2
AD
BC
=a2-ac,则B的大小为(  )
A、45°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α)
②cos2(-α)-
tan(360°+α)
sin(-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

某教授为了研究数学成绩与物理成绩是否相关,对郑州市某中学高二(1)班66名学生的期末考试数学成绩与物理成绩的统计如右表,根据以上数据,该教授能否得出:有85%的把握认为数学成绩与物理成绩有关?
及格(人) 不及格(人) 合计
数学 60 6 66
物理 54 12 66
合计 114 18 132
参考数据:
P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-2x(x∈R),g(x)=m+4ln(x+1)(-1<x≤4).
(Ⅰ)求f(x)在x=1处的切线方程;
(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且仅有两个不同的交点?若存在,求出m的值或范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+2x<0},B={x|y=
x+1
}
(1)求A∪B,(∁RA)∩B
(2)若集合C={x|2a<x<a+1}且C⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2ax-a2+1
x2+1
(x∈R),其中a>0.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间及在(-1,+∞)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b1(a2-a1)=b2
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设Cn=
anbn
4
,求数列{cn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+ax+b在x=-1处的切线与x轴平行
(1)求a的值和函数f(x)的单调区间;
(2)若函数y=f(x)的图象与抛物线y=
3
2
x2-15x+3恰有三个不同交点,求b的取值范围.

查看答案和解析>>

同步练习册答案