精英家教网 > 高中数学 > 题目详情
已知在△ABC中,角A,B,C的对边分别为a,b,c,已知点D是边BC的中点,且2
AD
BC
=a2-ac,则B的大小为(  )
A、45°B、60°
C、90°D、120°
考点:向量在几何中的应用,平面向量数量积的运算
专题:平面向量及应用
分析:依题意画出图形,由点D为边BC的中点,根据向量的平行四边形法则,表示出 
BC
和 
AD
,即可得到 
AC
BC
,又2 
AD
BC
=a2-ac,两者相等得到a,b和c的关系式,然后利用余弦定理表示出cosB,把求出的关系式代入即可求出cosB的值,根据B的范围,利用特殊角的三角函数值即可求出B的度数.
解答: 解:根据题意画出图形,如图所示:
根据图形及向量的平行四边形法则得到:
BC
=
AC
-
AB

由点D为边BC的中点,得到
AD
=
1
2
(
AC
+
AB
)

AD
BC
=
|
AC
|2-|
AB
|
2
2
=
b2-c2
2
,而2
AD
BC
=a2-ac,
得到b2-c2=a2-ac即a2+c2-b2=ac,
则cosB=
a2+c2-b2
2ac
=
1
2
,又B∈(0,180°),
所以B=60°.
故选:B.
点评:此题考查学生掌握平面向量的平行四边形法则,灵活运用余弦定理及特殊角的三角函数值化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆(x-2)2+(y-1)2=4被双曲线
x2
9
-
y2
16
=1的一条渐近线截得的弦长为(  )
A、2
3
B、2
C、
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
(1+i)2
1-i
在复平面上对应的点的坐标是(  )
A、(1,1)
B、(-1,1)
C、(-1,-1)
D、(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

对命题“?x∈R,x≤0”的否定正确的是(  )
A、?x∈R,x>0
B、?x∈R,x≤0
C、?x∈R,x>0
D、?x∈R,x≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(k,
2
),
b
=(2,-2)且
a
b
=-4
2
,则k的值为(  )
A、2
B、
2
C、-2
D、-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ=
3
5
,且cosθ<0,则tanθ等于(  )
A、-
3
4
B、
3
4
C、-3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+x-7的零点为x0,则x0所在区间为(  )
A、[-1,0]
B、[-2,-1]
C、[1,2]
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*)数列{bn}满足b1=
1
2
,3bn-bn-1=n(n≥2,n∈N*
(1)求数列{an}的通项公式;
(2)证明:数列{bn-an}为等比数列,并求出数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

把四进制数2132化为七进制数
 

查看答案和解析>>

同步练习册答案