【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当 时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的 ,再把所得图象向右平移 个单位,得到函数y=g(x),求方程g(x)=2在区间 上的所有根之和.
【答案】
(1)解:f(x)=2cos2x+2 sinxcosx+a
=cos2x+1+ sin2x+a
=2sin(2x+ )+a+1,
∵x∈[0, ],
∴2x+ ∈[ , ],
∴f(x)min=a+2=2,故a=0,
∴f(x)=2sin(2x+ )+1,
由2kπ﹣ ≤2x+ ≤2kπ+ (k∈Z),
解得:kπ﹣ ≤x≤kπ+ (k∈Z),
故f(x)的单调增区间是[kπ﹣ ,kπ+ ](k∈Z)
(2)解:g(x)=2sin[4(x﹣ )+ ]+1=2sin(4x﹣ )+1,
由g(x)=2得sin(4x﹣ )= ,
则4x﹣ =2kπ+ 或2kπ+ (k∈Z),
解得x= + 或 + ,(k∈Z);
∵x∈[0, ],
∴x= 或 ,故方程所有根之和为 + =
【解析】(1)利用三角函数中的恒等变换应用,可求得f(x)=2sin(2x+ )+a+1,x∈[0, ]时f(x)的最小值为2,可求得a,利用正弦函数的单调性可求f(x)的单调增区间;(2)利用函数y=Asin(ωx+φ)的图象变换,可求得g(x)=2sin(4x﹣ )+1,依题意,g(x)=2得sin(4x﹣ )= ,x∈[0, ],可求得x= 或 ,从而可得答案.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】已知 ,则导函数f′(x)是( )
A.仅有最小值的奇函数
B.既有最大值,又有最小值的偶函数
C.仅有最大值的偶函数
D.既有最大值,又有最小值的奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC于D,下列条件:
①∠B+∠DAC=90°,
②∠B=∠DAC,
③,
④AB2=BD·BC.
其中一定能够判定△ABC是直角三角形的共有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx﹣ax(a> ),当x∈(﹣2,0)时,f(x)的最小值为1,则a的值等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为5.
(1)求该抛物线的方程;
(2)已知抛物线上一点,过点作抛物线的两条弦和,且,判断直线是否过定点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数y=sin(x﹣ )的图象向左平移 个单位长度,再将图象上所有点的横坐标缩短为原来的 倍(纵坐标不变)得到函数f(x)的图象. (Ⅰ)写出函数f(x)的解析式;
(Ⅱ)若x∈[0, ]时,关于x的方程f(x)﹣m=0有两个不等的实数根,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com