精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为5.

(1)求该抛物线的方程;

(2)已知抛物线上一点,过点作抛物线的两条弦,且,判断直线是否过定点?并说明理由.

【答案】(1).(2)

【解析】试题分析:(1)求出抛物线的焦点坐标,结合题意列关于p的等式求p,则抛物线方程可求;
(2)由(1)求出M的坐标,设出直线DE的方程 ,联立直线方程和抛物线方程,化为关于y的一元二次方程后D,E两点纵坐标的和与积,利用 得到t与m的关系,进一步得到DE方程,由直线系方程可得直线DE所过定点.

试题解析:

(1)由题意设抛物线方程为

其准线方程为

到焦点的距离等于到其准线的距离,

,∴.

∴抛物线的方程为.

(2)由(1)可得点,可得直线的斜率不为0,

设直线的方程为:

联立,得

①.

,则.

,得:

,即

代人①式检验均满足

∴直线的方程为: .

∴直线过定点(定点不满足题意,故舍去).

点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1,求曲线在点处的切线方程;

2若曲线与直线只有一个交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且.

⑴ 写出年利润(万元)关于年产量(千件)的函数解析式;

⑵ 当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入年总成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数有4个零点,其图象如下图,和图象吻合的函数解析式是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明与分析
(1)已知a,b为正实数.求证: + ≥a+b;
(2)某题字迹有污损,内容是“已知|x|≤1, ,用分析法证明|x+y|≤|1+xy|”.试分析污损部分的文字内容是什么?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当 时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的 ,再把所得图象向右平移 个单位,得到函数y=g(x),求方程g(x)=2在区间 上的所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin2x的图象向左平移 个单位长度,所得函数是(
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤3x≤27},
(1)分别求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求实数a的取值集合.

查看答案和解析>>

同步练习册答案