精英家教网 > 高中数学 > 题目详情
2.计算:
(1)$\root{3}{{{a^{\frac{9}{2}}}\sqrt{{a^{-3}}}}}÷\sqrt{\root{3}{{{a^{-7}}}}\root{3}{{{a^{13}}}}}$
(2)1.5${\;}^{-\frac{1}{3}}$+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6-$\sqrt{(-\frac{2}{3})^{\frac{2}{3}}}$+($\sqrt{2}$-$\sqrt{3}$)0

分析 (1)利用指数幂的运算性质即可得出.
(2)利用指数幂的运算性质即可得出.

解答 解:(1)原式=$({a}^{\frac{9}{2}-\frac{3}{2}})^{\frac{1}{3}}$÷$({a}^{-\frac{7}{3}+\frac{13}{3}})^{\frac{1}{2}}$=a÷a=1;
(2)原式=$(\frac{2}{3})^{\frac{1}{3}}$+${2}^{3×\frac{1}{4}}×{2}^{\frac{1}{4}}$+22×33-$(\frac{2}{3})^{\frac{1}{3}}$+1=2+108+1=111.

点评 本题考查了指数幂的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若X~B(5,0.1),则P(X≤2)等于0.99144.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当b>a>0时,比较b,a,$\frac{a+b}{2}$,$\sqrt{ab}$,$\sqrt{\frac{{a}^{2}{+b}^{2}}{2}}$,$\frac{2ab}{a+b}$的大小(运用基本不等式及比较法)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.正三棱柱ABC-A1B1C1的底面边长为a,AA1=$\sqrt{2}$a,求:
(1)三棱柱的体积和侧面积;
(2)AB1与侧面BCC1B1所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为(-∞,0)∪(0,+∞),图象关于y轴对称,且当x<0时,f′(x)$>\frac{f(x)}{x}$恒成立,设a>1,则$\frac{4af(a+1)}{a+1}$,2$\sqrt{a}$f(2$\sqrt{a}$),(a+1)f($\frac{4a}{a+1}$)的大小关系为(  )
A.$\frac{4af(a+1)}{a+1}$>2$\sqrt{a}$f(2$\sqrt{a}$)>(a+1)f($\frac{4a}{a+1}$)B.$\frac{4af(a+1)}{a+1}$<2$\sqrt{a}$f(2$\sqrt{a}$)<(a+1)f($\frac{4a}{a+1}$)
C.2$\sqrt{a}$f(2$\sqrt{a}$)>$\frac{4af(a+1)}{a+1}$>(a+1)f($\frac{4a}{a+1}$)D.2$\sqrt{a}$f(2$\sqrt{a}$)<$\frac{4af(a+1)}{a+1}$<(a+1)f($\frac{4a}{a+1}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数$x,y满足\left\{\begin{array}{l}x-y-1≤0\\ 2x-y-3≥0\end{array}\right.,当z=ax+by(a>0,b>0)$在该约束条件下取到最小值4时,则ab的最大值为(  )
A.2B.4C.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{a}{x}$(a>0).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[1,+∞)上的最小值;
(Ⅲ)证明:?a∈(0,1),f($\frac{{a}^{2}}{2}$)>$\frac{{a}^{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x+1)•e-x(e为自然对数的底数)
(Ⅰ)求函数f(x)的单调区间
(Ⅱ)设函数g(x)=x•f(x)+t•f′(x)+e-x,若存在x1,x2∈[0,1],使得g(x1)<f(x2)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=3tan(2x+$\frac{π}{4}$)+2的最小正周期T=$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案