精英家教网 > 高中数学 > 题目详情
6.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}}\end{array}\right.$,则当3x-y取得最小值时,$\frac{x-5}{y+3}$的值为-$\frac{2}{3}$.

分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
设z=3x-y得y=3x-z,
平移直线y=3x-z由图象可知当直线y=3x-z经过点A时,直线y=3x-z的截距最大,
此时z最小.
由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,
此时$\frac{x-5}{y+3}$=$\frac{1-5}{3+3}=\frac{-4}{6}$=-$\frac{2}{3}$,
故答案为:-$\frac{2}{3}$.

点评 本题主要考查线性规划的应用,根据目标函数的几何意义求解最优解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知a,b,c分别为△ABC三个内角A,B,C的对边,b=acosC+$\frac{\sqrt{3}}{3}$asinC.
(1)求A;
(2)若a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.甲、乙、丙三种溶液分别重147g、343g、133g,现要将它们分别全部装入小瓶中,若小瓶装入液体的质量相同,则每瓶最多装7g.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个长椅上共有10个座位,现有4人去坐,其中恰有5个连续空位的坐法共有(  )
A.240种B.600种C.408种D.480种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在5道题中有2道选修题和3道必修题,如果不放回地依次取出2题,则第1次和第2次都抽到必修题的概率是(  )
A.$\frac{9}{25}$B.$\frac{3}{5}$C.$\frac{3}{10}$D.$\frac{4}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,已知定点F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),动点P满足|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=2,设点P的曲线为C,直线l:y=kx+m与C交于A、B两点:
(1)写出曲线C的方程,并求出曲线C的轨迹;
(2)当m=1,求实数k的取值范围;
(2)证明:存在直线l,满足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{AB}$|,并求出实数k、m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,已知点A($\frac{1}{2}$,0),点B为直线x=-$\frac{1}{2}$上的动点,点C是线段AB与y轴的交点,点M满足$\overrightarrow{BM}$•$\overrightarrow{OC}$=0,$\overrightarrow{CM}$•$\overrightarrow{AB}$=0.
(1)求动点M的轨迹E的方程;
(2)设点P是轨迹E上的动点,点R、N在y轴上,圆(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在R上的偶函数y=f(x)满足f(x+4)=f(x),当x∈[4,5]时,f(x)=x+1,则f(103)=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.裁好10个大小相同的正方形纸片,分别写上1、2、3、4、5、6、7、8、9、10并将它们团成小纸团放在容器中充分晃动,然后取出一个纸团,上面写的数字是偶数的概率是多少?

查看答案和解析>>

同步练习册答案