精英家教网 > 高中数学 > 题目详情
13.在空间中,a,b是不重合的直线,α,β是不重合的平面,则下列条件可推出a∥b的是(  )
A.a?α,b?β,α∥βB.a∥α,b?βC.a⊥α,b⊥αD.a⊥α,b?α

分析 A中,根据面面平行的几何特征,可判断出与b没有公共点,但a与b可能平行或异面
B中,根据线面平行的几何特征,可判断出与b没有公共点,但a与b可能平行或异面
C中,根据线面垂直的性质定理可得a∥b
D中,根据线面垂直的定义可得a⊥b.

解答 解:对于A,若a?α,b?β,α∥β,则a与b没有公共点,即a与b平行或异面;
对于B,若a∥α,b?α,则a与b没有公共点,即a与b平行或异面;
对于C,若a⊥α,b⊥α,由线面垂直的性质定理,可得a∥b;
对于D,若a⊥α,b?α,则由线面垂直的定义可得a⊥b;
故选:C.

点评 本题考查的知识点是空间中直线与直线之间的位置关系及直线与平面之间的位置关系,熟练掌握空间线面关系的判定及几何特征是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.执行图中程序框图,如果输入x1=2,x2=3,x3=7,则输出的T值为(  )
A.0B.4C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f( x)=ax3-bx+c为奇函数,则c=(  )
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设向量$\overrightarrow a,\overrightarrow b$的夹角为135°,且$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2$;
(1)求$\overrightarrow a•\overrightarrow b$的值;
(2)设$\overrightarrow c=x\overrightarrow a-\overrightarrow b(x∈R)$,当$|\overrightarrow c|$取得最小值时,求向量$\overrightarrow c$与$\overrightarrow b$夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某校学生小王在学习完解三角形的相关知识后,用所学知识测量高为AB 的烟囱的高度.先取与烟囱底部B在同一水平面内的两个观测点C,D,测得∠BDC=60°,∠BCD=75°,CD=40米,并在点C处的正上方E处观测顶部 A的仰角为30°,且CE=1米,则烟囱高 AB=20$\sqrt{2}$+1米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥P-ABC中,PC⊥底面ABC,△ABC为等腰直角三角形,∠ABC=90°,D,E分别是AB,PB的中点.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PB;
(3)若PC=BC=2,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,以原点为圆心,单位长度为半径的圆上有两点A($\frac{4}{5}$,$\frac{3}{5}$),B($\frac{5}{13}$,$\frac{12}{13}$).
(Ⅰ)求$\overrightarrow{OA}$,$\overrightarrow{OB}$夹角的余弦值;
(Ⅱ)已知C(1,0),记∠AOC=α,∠BOC=β,求tan$\frac{α+β}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且点(1,$\frac{3}{2}$)在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l:y=kx+m(k,m∈R)与椭圆E只有一个公共点P.
(1)用实数k,m表示点P的坐标;
(2)若动直线l与直线x=4相交于点Q,问:在x轴上是否存在定点M,使得MP⊥MQ?若存在,求出定点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将函数$y=2sin(3x-\frac{π}{2})$的图象向左平移φ(φ>0)个单位后,所得到的图象对应的函数为奇函数,则φ的最小值为$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案