精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=sinxcosx﹣sin2(x﹣ ). (Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x﹣ )在[0, ]上的最大值与最小值.

【答案】解:(Ⅰ)∵f(x)=sinxcosx﹣sin2(x﹣ )=sin2x﹣ , ∴函数f(x)的最小正周期T=π;
(Ⅱ)由(1)得f(x﹣ )=sin(2x﹣ )﹣
∵x∈[0, ],
∴﹣ ≤2x﹣
∴sin(2x﹣ )∈[﹣ ,1],
∴f(x﹣ )∈[﹣ ],
∴f(x﹣ )在[0, ]上的最大值是
最小值是﹣
【解析】(Ⅰ)由三角恒等变换化简f(x),得到最小正周期.(Ⅱ)得到f(x﹣ )后可以由x的范围得到f(x﹣ )的值域,由此得到最大最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以双曲线 (a>0,b>0)上一点M为圆心的圆与x轴恰相切于双曲线的一个焦点F,且与y轴交于P、Q两点.若△MPQ为正三角形,则该双曲线的离心率为( )
A.4
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线 的一条切线l与y=x,y轴三条直线围成三角形记为△OAB,则△OAB外接圆面积的最小值为(
A. ??
B. ??
C. ??
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=2acosθ(a>0),直线l的参数方程为 (t为参数),直线l与曲线C相交于A,B两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|AB|=2 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的导函数, 为自然对数的底数.
(1)讨论 的单调性;
(2)当 时,证明:
(3)当 时,判断函数 零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=[ax2﹣(2a+1)x+a+2]ex(a∈R).
(1)当a≥0时,讨论函数f(x)的单调性;
(2)设g(x)= ,当a=1时,若对任意x1∈(0,2),存在x2∈(1,2),使f(x1)≥g(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩阵A的变换下,坐标平面上的点的横坐标伸长到原来的3倍,纵坐标不变.
(1)求矩阵A及A1
(2)求圆x2+y2=4在矩阵A1的变换下得到的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn , 若an+1+(﹣1)nan=n,则S40=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的ai为茎叶图中的学生成绩,则输出的m,n分别是(
A.m=38,n=12
B.m=26,n=12
C.m=12,n=12
D.m=24,n=10

查看答案和解析>>

同步练习册答案