【题目】已知数列都是由实数组成的无穷数列.
(1)若都是等差数列,判断数列是否是等差数列,说明理由;
(2)若,且是等比数列,求的所有可能值;
(3)若都是等差数列,数列满足,求证: 是等差数列的充要条件是: 中至少有一个是常数.
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,对任意,点都在函数的图象上.
(1)求,归纳数列的通项公式(不必证明).
(2)将数列依次按项、项、项、项、项循环地分为,,,,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值.
(3)设为数列的前项积,若不等式对一切都成立,其中,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U型”函数。
(1)求证:函数是上的“U型”函数;
(2)设是(1)中的“U型”函数,若不等式对一切的恒成立,求实数的取值范围;
(3)若函数是区间上的“U型”函数,求实数和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记为数列的前项和.“任意正整数,均有”是“为递增数列”的
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
得分 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求;
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;
②若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,且,且,函数.
(1)设,,若是奇函数,求的值;
(2)设,,判断函数在上的单调性并加以证明;
(3)设,,,函数的图象是否关于某垂直于轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com