精英家教网 > 高中数学 > 题目详情
已知P1(x1,y1),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若sin(θ+
π
4
)=
3
5
,则x1x2+y1y2的值为
 
考点:两角和与差的正弦函数,任意角的三角函数的定义
专题:三角函数的求值,平面向量及应用
分析:根据题意表示出
OP1
OP2
,根据向量数量积的运算求得x1x2+y1y2=cosθ,进而根据sin(θ+
π
4
)的值,求得cosθ的值.
解答: 解:依题意知
OP1
=(x,y
OP2
=(x,y
OP1
OP2
=x1x2+y1y2
另外P₁,P₂在单位圆上,|
OP1
|=|
OP2
|=1
OP1
OP2
=|
OP1
|•|
OP2
|cosθ=1•1•cosθ=cosθ,
∴x1x2+y1y2=cosθ,
∵sin(θ+
π
4
)=
2
2
sinθ+
2
2
cosθ=
3
5
,①
sin2θ+cos2θ=1,②,且θ为钝角
联立①②求得 cosθ=-
2
10

故答案为:-
2
10
点评:本题主要考查了是平面向量的运算,平面向量数量积的应用.注重了对学生基础知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-(a+1)lnx-
a
x
(a∈R),g(x)=
x
ex

(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a<1时,若存在x1∈[1,2],使得对任意的x2∈[1,2],f(x1)<g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,AB=2,AD=2
2
,∠BAD=45°,以BD为折线,把△ABD折起,使平面ABD⊥平面CBD,连结AC.

(Ⅰ)求证:AB⊥DC;
(Ⅱ)求二面角B-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-
a
2
x2+(a+1)x-lnx(a∈R).
(1)当a=0时,求函数f(x)的极值;
(2)当a>0时,讨论函数f(x)的单调性;
(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有
a2-1
2
m+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若bcosC=(2a-c)cosB,
(Ⅰ)求∠B的大小;
(Ⅱ)若b=
7
,a-c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用函数的单调性比较大小:
(1)sin508°与sin144°;         
(2)cos760°与cos(-770°)
(3)tan(-
π
5
)与tan(-
7
).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(
3
x+φ)(0<φ<π),若f(x)+f′(x)是偶函数,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个农技站为了考察某种麦穗长的分布情况,在一块试验地里抽取了100个麦穗,量得长度如下(单位:cm):
6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6
5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8
6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5
6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4
6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4
6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6
5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0
5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7
5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0
6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3
根据上面的数据列出频率分布表、绘出频率分布直方图,并估计长度在5.75~6.05cm之间的麦穗在这批麦穗中所占的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=4,AB=2,PA=1,PA⊥平面ABCD,E为线段BC上的动点.
(1)当E为线段BC的中点时,求证:DE⊥平面PAE;
(2)若BE=1,求二面角P-ED-A的余弦值.

查看答案和解析>>

同步练习册答案