精英家教网 > 高中数学 > 题目详情
5.设f(x)是奇函数,求${∫}_{-a}^{a}$f(x)dx=0.

分析 由奇函数图象特点和定积分的几何意义可得.

解答 解:∵f(x)是奇函数,∴其图象关于原点对称,
∵定积分的几何意义是函数图象与x轴所围成的封闭图形的面积的代数和,
∴函数f(x)在区间[-a,a]上的图象必定关于原点O对称,
∴函数图象与x轴所围成的封闭图形的面积的代数和为0,
故${∫}_{-a}^{a}$f(x)dx=0.
故答案为:0

点评 本题考查定积分的几何意义,涉及函数的奇偶性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某同学在画函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象时,列表如下:
x$\frac{2π}{3}$$\frac{5π}{6}$
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)020-2
(1)请将上表数据补全,并直接写出函数f(x)的解析式;
(2)将函数f(x)图象上各点的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$,得到函数y=g(x)的图象,求函数y=g(x)在[0,$\frac{π}{2}$]上的最大值M,最小值N,并求M-N的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一玩具车沿某一斜面自由滑下,测得下滑的水平距离s与时间t之间的函数关系为s=$\frac{1}{2}$t2,则t=3时,此玩具车在水平方向的瞬时速度为(  )
A.$\frac{3}{2}$B.$\frac{9}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax+lnx-$\frac{{x}^{2}}{x-lnx}$有三个不同的零点x1,x2,x3(其中x1<x2<x3),则(1-$\frac{l{nx}_{1}}{{x}_{1}}$)2(1-$\frac{l{nx}_{2}}{{x}_{2}}$)(1-$\frac{l{nx}_{3}}{{x}_{3}}$)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如果函数y=$\frac{x+1}{x+a}$在(-$\frac{1}{2}$,+∞)上为减函数,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为研究质量x(单位:g)对弹簧长度y(单位:cm)的影响,对不同质量的6个物体进行测量,数据如下表所示:
 x/g 5 10 15 2025  30
 y/g 7.258.12  8.95 9.90 10.911.8
(1)作出散点图,并求出线性回归方程;
(2)求出R2
(3)进行残差分析.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出-个球,若取到球的编号为奇数,则取球停止,用X表示所有被取到的球的编号之和,则X的方差为$\frac{17}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,若2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|2$\overrightarrow{a}-\overrightarrow{b}$|,cos<$\overrightarrow{a}$,$\overrightarrow{a}+\overrightarrow{b}$)>=$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列{an}满足an-an+1=anan+1(n∈N*),数列{bn}满足bn=$\frac{1}{{a}_{n}}$,且b1+b2+…+b9=90,则b4•b6(  )
A.最大值为99B.为定值99C.最大值为100D.最大值为200

查看答案和解析>>

同步练习册答案