【题目】如图1,已知平面四边形
中,
.点
在
上,且满足
.沿
将
折起,使得平面
平面
,如图2.
![]()
(1)若点
是
的中点,证明:
平面
;
(2)在(1)的条件下,求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
平面
,
是棱
上的一点,满足
平面
.
![]()
(Ⅰ)证明:
;
(Ⅱ)设
,
,若
为棱
上一点,使得直线
与平面
所成角的大小为30°,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)若
的值域为
,求
的值;
(Ⅱ)巳
,是否存在这祥的实数
,使函数
在区间
内有且只有一个零点.若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,其前
项和为
,满足
,
,其中
,
,
,
.
⑴若
,
,
(
),求证:数列
是等比数列;
⑵若数列
是等比数列,求
,
的值;
⑶若
,且
,求证:数列
是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者命名为“优秀学员”.
(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);
(2)从甲班4名优秀学员中抽取两人,从乙班2名80分以下的学员中抽取一人,求三人平均分不低于90分的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
;直线
的参数方程为
(
为参数),直线
与曲线
分别交于
,
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若点
的极坐标为
,
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com