精英家教网 > 高中数学 > 题目详情
10.已知AD是△ABC中BC边上的中线,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$)B.-$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$)C.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)D.-$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)

分析 利用向量的平行四边形法则即可得出.

解答 解:$\overrightarrow{AD}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$=$\frac{1}{2}$$(\overrightarrow{a}+\overrightarrow{b})$,
故选:C.

点评 本题考查了向量的平行四边形法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知向量$\vec a=(2,-3,1)$,$\vec b=(-5,y,-2)$且$\overrightarrow a⊥\overrightarrow b$,则y=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a满足|a|<2,则事件“点M(1,1)与N(2,0)分别位于直线l:ax-2y+1=0两侧”的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{8}$C.$\frac{3}{8}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2cos(ωx+φ)+1(ω>0,|φ|<$\frac{π}{2}$),其图象与直线y=3相邻两个交点的距离为$\frac{2π}{3}$,若f(x)>1对?x∈(-$\frac{π}{12}$,$\frac{π}{6}$)恒成立,则φ的取值范围是(  )
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[-$\frac{π}{4}$,0]C.(-$\frac{π}{3}$,-$\frac{π}{12}$]D.[0,$\frac{π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在空间直角坐标系中,A(1,2,3),B(2,2,0),则$\overrightarrow{AB}$=(  )
A.(1,0,-3)B.(-1,0,3)C.(3,4,3)D.(1,0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若α为锐角且cos($α+\frac{π}{6}$)=$\frac{2}{3}$,则sin($\frac{π}{3}-α$)=(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{\sqrt{5}}{3}$D.-$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简与计算:
(Ⅰ)2${\;}^{lo{g}_{2}5}$-log${\;}_{\frac{1}{2}}$8;
(Ⅱ)$\frac{sin(π-α)+sin(\frac{π}{2}-α)+sin(2π-α)}{cos(π+α)+sin(\frac{π}{2}+α)+cos(2π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的$\frac{7}{8}$时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于(  )
A.$\frac{7}{6}$πB.$\frac{4}{3}$πC.$\frac{2}{3}$πD.$\frac{1}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设△ABC顶点坐标A(0,a),B(-$\sqrt{3a}$,0),C($\sqrt{3a}$,0),其中a>0,圆M为△ABC的外接圆.
(1)求圆M的方程
(2)当a变化时,圆M是否过某一定点,请说明理由.

查看答案和解析>>

同步练习册答案