(13分) 如图,已知椭圆
的两个焦点分别为
,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若
,求椭圆离心率e的取值范围。![]()
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
的离心率为
,右焦点为
。斜率为1的直线
与椭圆
交于
两点,以
为底边作等腰三角形,顶点为
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,点
,直线
、
都是圆
的切线(
点不在
轴上)。
⑴求过点
且焦点在
轴上抛物线的标准方程;
⑵过点
作直线
与⑴中的抛物线相交于
、
两点,问是否存在定点
,使
.
为常数?若存在,求出点
的坐标与常数;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图椭圆
:![]()
的两个焦点为
、
和顶点
、
构成面积为32的正方形.![]()
(1)求此时椭圆
的方程;
(2)设斜率为
的直线
与椭圆
相交于不同的两点
、
、
为
的中点,且
. 问:
、
两点能否关于直线
对称. 若能,求出
的取值范围;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆中心在原点,焦点在x轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
与椭圆相交于
两点,且坐标原点
到直线
的距离为
,
的大小是否为定值?若是求出该定值,不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C中心在原点,焦点在
轴上,一条经过点
且倾斜角余弦值为
的直线
交椭圆于A,B两点,交
轴于M点,又
.
(1)求直线
的方程;
(2)求椭圆C长轴的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知直线L:y=x+1与曲线C:
交于不同的两点A,B;O为坐标原点。
(1)若
,试探究在曲线C上仅存在几个点到直线L的距离恰为
?并说明理由;
(2)若
,且a>b,
,试求曲线C的离心率e的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知中心在坐标原点O,焦点在
轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线
平行于
,且与椭圆交于A、B两个不同点.
(ⅰ)若
为钝角,求直线
在
轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com