(本小题满分12分)
已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为。
(Ⅰ)求椭圆的方程;
(Ⅱ)求的面积。
科目:高中数学 来源: 题型:解答题
已知圆O:,直线l:与椭圆C:相交于P、Q两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且,求直线l的方程;
(Ⅱ)如图,若重心恰好在圆上,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知抛物线:经过椭圆:的两个焦点.设,又为与不在轴上的两个交点,若的重心(中线的交点)在抛物线上,
(1)求和的方程.
(2)有哪几条直线与和都相切?(求出公切线方程)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q ?若存在求出点Q的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
椭圆的左、右焦点分别为、,点,满足.
(1)求椭圆的离心率;
(2)设直线与椭圆相交于两点,若直线与圆相交于两点,且,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com