精英家教网 > 高中数学 > 题目详情
若数列{an}中,a1=1,点(an,an+1+1)(n∈N*)在函数f(x)=2x+1的图象上,
(1)求数列{an}的通项公式;
(2)求数列{2nan}的前n项和Sn
分析:(1):将点(an,an+1+1)(n∈N*)代入函数f(x)=2x+1的解析式,整理后发现{an}是公比为2的等比数列,通项公式可求:an=2n-1
(2)2nan=2n•2n-1=n•2n,利用错位相减法求解.
解答:解:(1)∵(an,an+1+1)(n∈N*)在函数f(x)=2x+1的图象上
则an+1+1=2an+1(n∈N*)有an+1=2an
∵a1=1,
∴an≠0,
an+1
an
=2

∴{an}是公比为2的等比数列,通项公式为an=2n-1(n∈N*
(2)2nan=2n•2n-1=n•2n,Sn=2+2•22+3•23+…+(n-1)•2n-1+n•2n①2Sn=22+2•23+3•24+…+(n-1)•2n+n•2n+1
①-②有-Sn=2+22+23+…+2n-n•2n+1
故Sn=(n-1)•2n+1+2(n∈N*
点评:本题主要考查等比数列的判定,性质和数列的求和.对于一些特殊数列的求和可利用错位相减法、裂项法等方法来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}中,对任意n∈N*,都有
an+2-an+1
an+1-an
=k
(k为常数),则称{an}为等差比数列.下列对“等差比数列”的判断:
①k不可能为0;
②等差数列一定是等差比数列;
③等比数列一定是等差比数列;
④通项公式为an=a•bn+c(a≠0,b≠0,1)的数列一定是等差比数列.
其中正确的判断为(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}中,a1=
1
3
,且对任意的正整数p、q都有ap+q=apaq,则an=(  )
A、(
1
3
)n-1
B、(
1
3
)n-1
C、(
1
3
)
n
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}中,an=43-3n,则Sn最大值n=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}中an=-n2+6n+7,则其前n项和Sn取最大值时,n=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}中,an=
100n
n!
,则{an}为(  )

查看答案和解析>>

同步练习册答案