精英家教网 > 高中数学 > 题目详情
8.若a,b,c均为正实数,则三个数a+$\frac{1}{b}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$这三个数中不小于2的数(  )
A.可以不存在B.至少有1个C.至少有2个D.至多有2个

分析 根据基本不等式,利用反证法思想,可以确定至少有一个不小于2,从而可以得结论.

解答 解:假设a+$\frac{1}{b}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$这三个数都小于2,
∴a+$\frac{1}{b}$+b+$\frac{1}{c}$+c+$\frac{1}{a}$<6
∵a+$\frac{1}{b}$+b+$\frac{1}{c}$+c+$\frac{1}{a}$=(a+$\frac{1}{a}$)+(b+$\frac{1}{b}$)+(c+$\frac{1}{c}$)≥2+2+2=6,
这与假设矛盾,
故至少有一个不小于2
故选:B

点评 本题的考点是不等式的大小比较,考查基本不等式的运用,考查了反证法思想,难度不大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x)的图象在区间[a,b]上是连续不断的,如果存在x0∈[a,b],使得$|{f({x_0})}|=\frac{{\int_a^b{f(x)dx}}}{b-a}•{e^{x_0}}$成立,则称x0为函数f(x)在[a,b]上的“好点”,那么函数f(x)=x2+2x在[-1,1]上的“好点”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=|x|-$\frac{a}{x}$(a∈R)的图象不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x(1+|x|),设关于x的不等式f(x2+1)>f(ax)的解集为A,若$[-\frac{1}{2},\frac{1}{2}]⊆A$,则实数a的取值范围为(  )
A.(-2,2)B.$(-\frac{5}{2},\frac{5}{2})$C.$(-\frac{5}{2},-1)∪(1,\frac{5}{2})$D.$(-∞,-\frac{5}{2})∪(\frac{5}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}满足a1=$\frac{1}{2}$,an+1-an+anan+1=0(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在复平面内,复数$\frac{1-i}{i}$对应的点的坐标为(-1,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2+cosx的导数f′(x)为(  )
A.x-sinxB.2x-sinxC.x+sinxD.2x+sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.我国自主研制的第一个月球探测器--“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是$\frac{R}{2}$,$\frac{5R}{2}$(如图所示),则“嫦娥一号”卫星轨道的离心率为(  )
A.$\frac{2}{5}$B.$\frac{1}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)、g(x):
x0123
f(x)2031
x0123
g(x)2103
则函数y=(f(g(x))的零点是 (  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案