精英家教网 > 高中数学 > 题目详情
17.我国自主研制的第一个月球探测器--“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是$\frac{R}{2}$,$\frac{5R}{2}$(如图所示),则“嫦娥一号”卫星轨道的离心率为(  )
A.$\frac{2}{5}$B.$\frac{1}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

分析 根据题意,由椭圆的几何性质分析可得a=$\frac{\frac{R}{2}+\frac{5R}{2}+2R}{2}$=$\frac{5R}{2}$,c=OF1=$\frac{5R}{2}$-$\frac{R}{2}$-R=R,由椭圆的离心率公式计算可得答案.

解答 解:根据题意,卫星近地点,远地点离地面的距离分别是$\frac{R}{2}$,$\frac{5R}{2}$,
则a=$\frac{\frac{R}{2}+\frac{5R}{2}+2R}{2}$=$\frac{5R}{2}$,c=OF1=$\frac{5R}{2}$-$\frac{R}{2}$-R=R,
则e=$\frac{c}{a}$=$\frac{R}{\frac{5R}{2}}$=$\frac{2}{5}$;
故选:A.

点评 本题考查椭圆的几何性质,关键是分析题意中的实际问题,得到a、c的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,正方体ABCD-A1B1C1D1的棱长为2,点P在正方形ABCD的边界及其内部运动.平面区域W由所有满足A1P≥$\sqrt{5}$的点P组成,则W的面积是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a,b,c均为正实数,则三个数a+$\frac{1}{b}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$这三个数中不小于2的数(  )
A.可以不存在B.至少有1个C.至少有2个D.至多有2个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,函数f(x)的图象经过(0,0),(4,8),(8,0),(12,8)四个点,试用“>,=,<”填空:
(1)$\frac{f(4)-f(2)}{2}$>$\frac{f(12)-f(8)}{4}$;
(2)f′(6)<f′(10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z=$\frac{3}{1+2i}$(i是虚数单位),则$\frac{4i}{z•\overline{z}-1}$=(  )
A.iB.2iC.3iD.5i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.观察下列式子:
13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,按照上述规律,则83=57+59+61+63+65+67+69+71.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设实数a,b,c满足a2+b2+c2=1.
(Ⅰ)证明:ab+bc+ac≤1;
(Ⅱ)若$\sqrt{2}$a+$\sqrt{3}$b+2c≤|x-1|+|x+m|对任意的实数a,b,c,x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.己知x、y∈R,i是虚数单位,若x+yi与$\frac{2+i}{1+i}$互为共轭复数,则x+y=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x2-2x|-ax-a,其中a>0,若只存在两个整数x,使得f(x)<0,则a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案