分析 (Ⅰ)利用基本不等式可得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,三式相加即得结论.由
(Ⅱ)柯西不等式,我们易结合a2+b2+c2=1,得到$\sqrt{2}$a+$\sqrt{3}$b+2c≤3,再由$\sqrt{2}$a+$\sqrt{3}$b+2c≤|x-1|+|x+m|对任意的实数a,b,c,x恒成立,得到3≤|x-1|+|x+m|,进而解绝对值不等式,即可得到答案.
解答 (Ⅰ)证明:由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
三式相加即得a2+b2+c2≥ab+bc+ca,又a2+b2+c2=1,
所以ab+bc+ca≤1.
(Ⅱ)解:∵($\sqrt{2}$a+$\sqrt{3}$b+2c)2≤(2+3+4)(a2+b2+c2)=9
∴$\sqrt{2}$a+$\sqrt{3}$b+2c≤3
又∵$\sqrt{2}$a+$\sqrt{3}$b+2c≤|x-1|+|x+m|对任意的实数a,b,c,x恒成立,
∴3≤|x-1|+|x+m|,
∵|x-1|+|x+m|≥|m+1|,
∴|m+1|≥3
解得m≤-4或m≥2.
点评 本题考查不等式的证明,考查基本不等式的运用,考查柯西不等式、绝对值不等式求解,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 0 | 1 | 2 | 3 |
| f(x) | 2 | 0 | 3 | 1 |
| x | 0 | 1 | 2 | 3 |
| g(x) | 2 | 1 | 0 | 3 |
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com