精英家教网 > 高中数学 > 题目详情
11.某几何体的三视图都是全等图形,则该几何体一定是(  )
A.球体B.长方体C.三棱锥D.圆锥

分析 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆.

解答 解:球、长方体、三棱锥、圆锥中,
任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是等圆,
故选A.

点评 本题考查简单空间图形的三视图,本题解题的关键是看出各个图形的在任意方向上的视图,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知正三角形ABC边长为2,将它沿高AD翻折,使点B与点C间的距离为$\sqrt{3}$,此时四面体ABCD的外接球的表面积为7π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线的参数方程为$\left\{\begin{array}{l}x=2-3t\\ y=1+2t\end{array}\right.$(t为参数),则直线的普通方程为(  )
A.2x+3y-7=0B.2x+3y-1=0C.2x-3y+1=0D.2x-3y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知a,b∈(0,+∞),求证:x,y∈R,有$\frac{x^2}{a}$+$\frac{y^2}{b}$≥$\frac{{{{(x+y)}^2}}}{a+b}$;
(2)若0<a<2,0<b<2,0<c<2,求证:(2-a)b,(2-b)c,(2-c)a不能同时大于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过曲线y=x3-1上一点(1,0)且与该点处的切线垂直的直线方程是(  )
A.y=3x-3B.y=$\frac{1}{3}$x-$\frac{1}{3}$C.y=-$\frac{1}{3}$x+$\frac{1}{3}$D.y=-3x+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设变量x,y满足$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,则x+2y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=a2-x+1(a>0,且a≠1)的图象恒过定点A,点A在直线mx+ny=1(mn>0)上,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x∈R|0<ax+1≤5},B={x∈R|-$\frac{1}{2}$<x≤2}(a≠0).
(Ⅰ)若A=B,求出实数a的值;
(Ⅱ)若命题p:x∈A,命题q:x∈B且p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示:已知直线l1:y=kx+1与圆C:x2+y2=4相交于P、Q两点.
(1)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=-$\frac{5}{2}$,求实数k的值;
(2)过点(0,1)作直线l2与l1垂直,且直线l2与圆C交于M、N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

同步练习册答案