精英家教网 > 高中数学 > 题目详情
6.过曲线y=x3-1上一点(1,0)且与该点处的切线垂直的直线方程是(  )
A.y=3x-3B.y=$\frac{1}{3}$x-$\frac{1}{3}$C.y=-$\frac{1}{3}$x+$\frac{1}{3}$D.y=-3x+3

分析 求出原函数的导函数,得到函数在x=1处的导数值,得到与该点处的切线垂直的直线的斜率,然后由直线方程的点斜式得答案.

解答 解:由线y=x3-1,得y′=3x2
∴y′|x=1=3,
则过曲线y=x3-1上一点(1,0)且与该点处的切线垂直的直线的斜率为-$\frac{1}{3}$,
∴直线方程为y-0=-$\frac{1}{3}$(x-1),
即y=-$\frac{1}{3}$x+$\frac{1}{3}$,
故选:C.

点评 本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在三棱锥S-ABC中,△ABC是边长为4$\sqrt{3}$的等边三角形,SA=SC=2$\sqrt{7}$,平面SAC⊥平面ABC,则该三棱锥外接球的表面积为65π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)求证:$\sqrt{a}$-$\sqrt{a-1}$<$\sqrt{a-2}$-$\sqrt{a-3}$(a>3).
(2)求由曲线y=$\sqrt{x}$,直线y=x-2及y轴所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知方程$\frac{{x}^{2}}{2+m}$+$\frac{{y}^{2}}{1-m}$=1表示椭圆,则m的取值范围为(  )
A.(-∞,-2)∪(1,+∞)B.(-2,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1)C.(-2,1)D.(-1,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为“次有界函数”,现给出下列函数:
①f(x)=x;②f(x)=$\frac{x+1}{{x}^{2}+x+1}$;③f(x)=x2;④f(x)是定义在实数集R的奇函数,且对一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是“次有界函数”的序号是①④(写出所有符合条件的全部序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图都是全等图形,则该几何体一定是(  )
A.球体B.长方体C.三棱锥D.圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.给出下列五个命题:
①x=$\frac{5π}{12}$是函数y=2sin(2x-$\frac{π}{3}$)的一条对称轴;
②函数y=tanx的图象关于点($\frac{π}{2}$,0)对称;
③正弦函数在第一象限为增函数
④函数y=cos(x-$\frac{π}{3}$)的一个单调增区间是(-$\frac{π}{2},\frac{π}{2}$)
以上四个命题中正确的有①②(填写正确命题前面的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线$\left\{{\begin{array}{l}{x=asecα}\\{y=btanα}\end{array}}\right.$(α为参数)与曲线$\left\{{\begin{array}{l}{x=atanβ}\\{y=bsecβ}\end{array}}\right.$(β为参数)的离心率分别为e1和e2,则e1+e2的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.做投掷一颗骰子试验,观察骰子出现的点数,用基本事件空间的子集写出下列事件:
(1)“出现奇数点”;
(2)“点数大于3”.

查看答案和解析>>

同步练习册答案