分析 利用SA=SC=2$\sqrt{7}$,平面SAC⊥平面ABC,求出S到底面ABC的距离,求出底面三角形的外接圆、内切圆的半径,通过勾股定理求出球的半径,即可求解球的表面积.
解答 解:∵△ABC是边长为4$\sqrt{3}$的等边三角形,
∴△ABC外接圆半径$\frac{\sqrt{3}}{3}×4\sqrt{3}$=4,内切圆的半径为$\frac{\sqrt{3}}{6}×4\sqrt{3}$=2
∵SA=SC=2$\sqrt{7}$,平面SAC⊥平面ABC,
∴S到底面ABC的距离h=4,
设球心O到平面ABC的距离为d,
利用勾股定理可得球的半径为:R2=42+d2=(4-d)2+22,∴R=$\frac{\sqrt{65}}{2}$
球的表面积:4πR2=65π.
故答案为:65π.
点评 本题考查球的表面积的求法,球的内含体与三棱锥的关系,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20\sqrt{5}}{3}$π | B. | $\frac{8\sqrt{2}}{3}$π | C. | 20π | D. | 8π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{24}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢打篮球 | 不喜欢打篮球 | 总计 | |
| 身高超过175cm | 20 | 6 | 26 |
| 身高不超175cm | 5 | 19 | 24 |
| 总计 | 25 | 25 | 50 |
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=3x-3 | B. | y=$\frac{1}{3}$x-$\frac{1}{3}$ | C. | y=-$\frac{1}{3}$x+$\frac{1}{3}$ | D. | y=-3x+3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com