分析 由于函数y=a2-x+1(a>0,a≠1)图象恒过定点A(2,2),又点A在直线mx+ny=1上(mn>0),可得2m+2n=1.再利用“乘1法”和基本不等式的性质即可得出.
解答 解:x=2时y=2,所以定点A(2,2)( 3分)
A在直线上,所以2m+2n=1,且mn>0,(6分)
所以$\frac{1}{m}+\frac{1}{n}$=$(\frac{1}{m}+\frac{1}{n})(2m+2n)=2+2+\frac{2m}{n}+\frac{2n}{m}≥4+2\sqrt{4}=8$,
即$\frac{1}{m}+\frac{1}{n}$的最小值为8 (10分)
点评 本题考查了指数函数的性质、“乘1法”和基本不等式的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(1,+∞) | B. | (-2,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1) | C. | (-2,1) | D. | (-1,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com