精英家教网 > 高中数学 > 题目详情
已知直线相交于A、B两点,M是线段AB上的一点,,且点M在直线上.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程.
(Ⅰ)
(Ⅱ)
(Ⅰ)由知M是AB的中点,
设A、B两点的坐标分别为


∴M点的坐标为                                
又M点的直线l上:
     
(Ⅱ)由(Ⅰ)知,不妨设椭圆的一个焦点坐标为关于直线l:
上的对称点为
则有                      
由已知
,∴所求的椭圆的方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=4x.
(1)若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
(2)若M(m,0)是x轴上的一定点,Q是(1)所求轨迹上任一点,试问|MQ|有无最小值?若有,求出其值;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 两点分别在射线OS,OT上移动,
,O为坐标原点,动点P满足.
(1)求的值
(2)求点P的轨迹C的方程,并说明它表示怎样的曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线中心在原点,坐标轴为对称轴,与圆x2+y2=17交于A(4,-1).若圆在点A的切线与双曲线的一条渐近线平行,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)离心率为的椭圆上有一点到椭圆两焦点的距离和为.以椭圆的右焦点为圆心,短轴长为直径的圆有切线为切点),且点满足为椭圆的上顶点)。(I)求椭圆的方程;(II)求点所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)
已知曲线C上的动点满足到点的距离比到直线的距离小1.
求曲线C的方程;过点F的直线l与曲线C交于A、B两点.(ⅰ)过A、B两点分别作抛物线的切线,设其交点为M,证明;(ⅱ)是否在y轴上存在定点Q,使得无论AB怎样运动,都有?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
求适合下列条件的圆锥曲线方程:
(1).长轴长是短轴长的3倍,经过点(3,0)的椭圆标准方程。
(2).已知双曲线两个焦点的坐标为,双曲线上一点P到两焦点的距离之差的绝对值等于6,求双曲线标准方程.
(3).已知抛物线的顶点在原点,准线与其平行线x=2的距离为3,求抛物线标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线过点(-1,2)且与直线垂直,则的方程是 (   )
a.                     b.
c.                     d.

查看答案和解析>>

同步练习册答案