精英家教网 > 高中数学 > 题目详情
13.设直线y=kx+3与y=$\frac{1}{k}$x-5的交点在直线y=x上,求实数k的值.

分析 联立$\left\{\begin{array}{l}{y=kx+3}\\{y=\frac{1}{k}x-5}\end{array}\right.$,解得x,y(k≠±1).代入y=x,解出即可.

解答 解:联立$\left\{\begin{array}{l}{y=kx+3}\\{y=\frac{1}{k}x-5}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{-8k}{{k}^{2}-1}}\\{y=\frac{-5{k}^{2}-3}{{k}^{2}-1}}\end{array}\right.$(k≠±1).
代入y=x,可得8k=5k2-3,
化为5k2-8k+3=0,
解得k=$\frac{3}{5}$.

点评 本题考查了直线的交点、一元二次方程的解法,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{m+ln(2x+1)}{2x+1}$.(m∈R)
(1)若曲线y=f(x)在x=0处的切线与直线x-2y-2016=0垂直,求函数f(x)的极值;
(2)若关于t的函数F(t)=lnt+t2-3t-$\frac{1}{2016}{(2x+1)^2}$f′(x)在$x∈[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$时恒有3个不同的零点,试求实数m的范围.(f′(x)为f(x)的导函数,e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,若an>0,且a3,a7是x2-32x+64=0的两根,则log2a1+log2a2+log2a3+…+log2a9=(  )
A.27B.36C.18D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴非负半轴重合,终边过点P(-2,1),则sin2α的值为$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax2+|x-2a|,其中a>0
(1)当a=1时,求f(x)在[0,+∞)上的最小值;
(2)若函数g(x)=f(x)-b在[0,+∞)上有两个零点,求实数b的取值范围(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某城镇的人口数量不断增长,每年以2%的速度递增,假设该城镇设原来人口为1万
(1)求该城镇人口数量随时间增长的函数关系式;
(2)求10年后该城镇的人口数.(精确到0.001万)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知α、β∈(0,$\frac{π}{2}$)且sin(α+2β)=$\frac{1}{3}$.若α+β=$\frac{2π}{3}$,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线y=kx-k+1与椭圆C:x2+my2=3恒有公共点,则m的取值范围是0<m<1或1<m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出以下命题:
①“a=0”是“函数f(x)=x2+ax,(x∈R)为偶函数的充要条件”;
②?x∈N,使x2≤x;
③命题“若α是锐角,则sinα>0”的否命题
其中说法正确的是①②.

查看答案和解析>>

同步练习册答案