精英家教网 > 高中数学 > 题目详情
如图,

在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0.
(2)若四边形ABCD的面积为8,对角线AC的长为2,且·=0,求D2+E2-4F的值.
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O,G,H是否共线,并说明理由.
(1)见解析   (2)64  (3) O,G,H三点必定共线,理由见解析
(1)方法一:由题意,原点O必定在圆M内,即点(0,0)代入方程x2+y2+Dx+Ey+F=0的左边所得的值小于0,于是有F<0,即证.
方法二:由题意,不难发现A,C两点分别在x轴正、负半轴上.设两点坐标分别为A(a,0),C(c,0),则有ac<0.对于圆的方程x2+y2+Dx+Ey+F=0,当y=0时,可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,于是有xAxC=ac=F.
因为ac<0,故F<0.
(2)不难发现,对角线互相垂直的四边形ABCD的面积S=,因为S=8,|AC|=2,可得|BD|=8.
又因为·=0,所以∠BAD为直角,又因为四边形是圆M的内接四边形,故|BD|=2r=8⇒r=4.
对于方程x2+y2+Dx+Ey+F=0所表示的圆,
可知+-F=r2,所以D2+E2-4F=4r2=64.
(3)设四边形四个顶点的坐标分别为A(a,0),B(0,b),C(c,0),D(0,d).
则可得点G的坐标为(,),即=(,).
=(-a,b),且AB⊥OH,故要使G,O,H三点共线,只需证·=0即可.
·=,且对于圆M的一般方程x2+y2+Dx+Ey+F=0,
当y=0时可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,
于是有xAxC=ac=F.
同理,当x=0时,可得y2+Ey+F=0,其中方程的两根分别为点B和点D的纵坐标,于是有yByD=bd=F.
所以·==0,即AB⊥OG.
故O,G,H三点必定共线.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C0(a>b>0,a,b为常数),动圆C1:x2+y2=t12,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.

(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t12+t22为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知关于的方程:R.
(Ⅰ)若方程表示圆,求的取值范围;
(Ⅱ)若圆与直线相交于两点,且=,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若☉O:x2+y2=5与☉O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长是   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第二象限内,则a的取值范围为(  )
A.(-∞,-2)B.(-∞,-1)
C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆的方程为x2y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为ACBD,则四边形ABCD的面积是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

:与圆:的位置关系是(   )
A.相交B.外切C.内切D.相离

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.

查看答案和解析>>

同步练习册答案