精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,且a2=3,S7=49,n∈N*
(I)求数列{an}的通项公式;
(Ⅱ)设bn=
(an+1)•2n-1
n
,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(Ⅰ)根据等差数列,建立方程关系即可求数列{an}的通项公式.
(Ⅱ)求出数列{bn}的通项公式,利用等比数列的求和公式即可得到结论.
解答: 解:(Ⅰ)设等差数列的公差是d,
∵a2=3,S7=49,
a1+d=3
7a1+
7×6
2
d=49
,解得
a1=1
d=2

∴an=a1+(n-1)d=1+2(n-1)=2n-1.
(Ⅱ)bn=
(an+1)•2n-1
n
=
(2n-1+1)•2n-1
n
=2n
则数列{bn}为等比数列,
则数列{bn}的前n项和Tn=
2(1-2n)
1-2
=2n+1-2
点评:本题主要考查数列的通项公式和数列求和,要求熟练掌握等差数列和等比数列的通项公式和求和公式,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,且在(-∞,0)内是增函数,f(1)=0,若f(x)<0,则实数x的取值范围是(  )
A、(-1,0)∪(0,1)
B、(-∞,-1)∪(0,1)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=5,anan+1=2n,则
a1
a3
=(  )
A、
1
2
B、2
C、
5
2
D、
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在x轴上,离心率为
3
2
,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OA⊥OB,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出命题P的逆命题,否命题,逆否命题,并判断其真假.命题Q的否定并判断其真假
P:矩形的对角线相等且互相平分;
Q:正偶数不是质数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2ax+2+b(a>0),若f(x)在区间[2,3]上有最大值5,最小值2.
(1)求a,b的值;  
(2)若g(x)=f(x)-mx在[2,4]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(m+1)x3+(m+2)x2+n为定义在R上的奇函数(m,n为常数).
(1)求m,n的值;
(2)判断f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象经过点(0,0),其导函数f′(x)=2x-5,当x∈(n+2,n+3](n∈N*)时,函数f(x)值域中整数值的个数记为an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(
2
)an+
4
a2n-1a2n+1
(n∈N*)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 如图,四边形ABCD是等腰梯形,AB∥DC,A(-1,-2),B(6,5),D(0,2).
(Ⅰ)求点C的坐标.
(Ⅱ)求等腰梯形ABCD对角线交点M的坐标.

查看答案和解析>>

同步练习册答案