精英家教网 > 高中数学 > 题目详情
5.若四面体ABCD的棱长都相等,则AB与平面BCD所成角的余弦值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{3}$

分析 在四面体ABCD中,过A作AH⊥平面BCD于点H,则H为底面正三角形BCD的重心,连接BH,则∠ABH=α,就是AB在平面BCD所成角,解直角三角形ABH即可.

解答 解:如图:在等边三角形BCD中,BM为CD边上的高,再在四面体ABCD中,过A作AH⊥平面BCD于点H,则H为底面正三角形BCD的重心,则∠ABH=α,就是AB在平面BCD所成角,
设棱长为a,由BM为CD边上的高,
则BM=$\frac{\sqrt{3}}{2}a$,在Rt△ABH中,则BH=$\frac{2}{3}$BM
=a$•\frac{\sqrt{3}}{2}×\frac{2}{3}=\frac{\sqrt{3}}{3}a$,
∴cosα=$\frac{BH}{AB}=\frac{\frac{\sqrt{3}}{3}a}{a}=\frac{\sqrt{3}}{3}$.
故选:D.

点评 本题考查了直线与平面所成的角,关键是找到斜线在平面内的射影,把空间角转化为平面角求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,4).
(Ⅰ) 若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow a+2\overrightarrow b$平行,求k的值;
(Ⅱ) 若向量$k\overrightarrow a+\overrightarrow b$与$\overrightarrow a+2\overrightarrow b$的夹角为锐角,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知甲、乙两人分别位于图中的M、N两点,每隔1分钟,甲、乙两人分别向东南西北四个方向的其中一个方向行走1格,且甲向四个方向行走的概率是相等的,乙向东、向西行走的概率都是$\frac{1}{3}$,向北行走的概率是$\frac{1}{4}$,甲、乙分别向某个方向行走的事件记为A、B.
(1)分别求出甲、乙向南行走的概率;
(2)求两人经过1分钟相遇的概率.
(已知事件A、B同时发生的概率P(AB)=P(A)•P(B))

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等差数列{an}的前n项和为Sn,且满足a2=3,S5=25,则S10=100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列命题:
①不存在实数α,使$sinα+cosα=\frac{3}{2}$ 
②$(\overrightarrow a•\overrightarrow b)\overrightarrow c=\overrightarrow a(\overrightarrow b•\overrightarrow c)$;
③若向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线,且向量$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{b}$+λ$\overrightarrow{a}$的方向相反,则λ=-1;
④函数y=tanx在第三象限内是单调递增的
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于任意两个自然数m,n,定义某种?运算如下:当m,n都为奇数或偶数时,m?n=m+n;当m,n中一个为偶数,另一个为奇数时,m?n=mn.则在此定义下,集合M={(a,b)|a?b=18,a∈N,b∈N}中的元素个数为(  )
A.26B.25C.24D.23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x+1)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2,不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,则不等式f(1-x)<0的解集为(  )
A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,是某市1000户居民月平均用电量的频率分布直方图,
(1)如果当地政府希望85%以上的居民每月的用电量不超出标准,这个标准为多少时比较适当?
(2)有关部门为了制定居民月用电量标准,采用分层抽样的方法从1000户居民中抽取50户参加听证会,并且要在这已经确定的50人中随机确定两人做中心发言,求这两人分别来自用电量区间[60,80)和[80,100)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知Sn是等差数列{an}的前n项和,若a2015=S2015=2015,则首项a1=(  )
A.2015B.-2015C.2013D.-2013

查看答案和解析>>

同步练习册答案