精英家教网 > 高中数学 > 题目详情
19.设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)=$\frac{5}{9}$,则D($\sqrt{3}$Y+1)=(  )
A.2B.3C.6D.7

分析 利用间接法求出p,代入二项分布的方差公式计算D(Y),于是D($\sqrt{3}$Y+1)=3D(Y).

解答 解:P(X≥1)=1-P(X=0)=1-(1-p)2=$\frac{5}{9}$,
∴p=$\frac{1}{3}$,
∴D(Y)=3×$\frac{1}{3}×\frac{2}{3}$=$\frac{2}{3}$,
∴D($\sqrt{3}$Y+1)=3D(Y)=2.
故选:A.

点评 本题考查了二项分布的概率公式,方差计算,方差的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2},
(1)求a,b的值;
(2)求关于x的不等式bx2-ax-2>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)+\sqrt{3}tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)$的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$tan({\frac{π}{4}-α})=3$,则tanα等于(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右顶点为A,离心率为e,且椭圆C过点$E({2e,\frac{b}{2}})$,以AE为直径的圆恰好经过椭圆的右焦点.
(1)求椭圆C的标准方程;
(2)已知动直线l(直线l不过原点且斜率存在)与椭圆C交于P,Q两个不同的点,且△OPQ的面积S=1,若N为线段PQ的中点,问:在x轴上是否存在两个定点E1,E2,使得直线NE1与NE2的斜率之积为定值?若存在,求出E1,E2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出如下列联表(公式见卷首)
患心脏病患其它病合  计
高血压201030
不高血压305080
合  计5060110
参照公式,得到的正确结论是(  )
A.有99%以上的把握认为“高血压与患心脏病无关”
B.有99%以上的把握认为“高血压与患心脏病有关”
C.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”
D.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数a,b,c∈(0,1)且10a+9b=9,a+b+c=1,则当$\frac{10}{a}+\frac{1}{9b}$取最小值时,c的值为(  )
A.$\frac{5}{11}$B.$\frac{2}{11}$C.$\frac{1}{11}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
                            性别
是否需要志愿者
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)请根据上面的数据分析该地区的老年人需要志愿者提供帮助与性别有关吗?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在下列各数中,最大的数是(  )
A.85(9)B.11111(2)C.68(8)D.210(6)

查看答案和解析>>

同步练习册答案