精英家教网 > 高中数学 > 题目详情
10.$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)+\sqrt{3}tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)$的值是$\sqrt{3}$.

分析 根据正切函数的和与差的公式求出即可.

解答 解:tna$\frac{π}{3}$=tan[$(\frac{π}{6}-θ)+(\frac{π}{6}+θ)$]=$\frac{tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)}{1-tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)}$=$\sqrt{3}$.
即$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)$=$\sqrt{3}$-$\sqrt{3}$tan($\frac{π}{6}-θ$)tan($\frac{π}{6}+θ$).、
故得:$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)+\sqrt{3}tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)$=$\sqrt{3}$-$\sqrt{3}$tan($\frac{π}{6}-θ$)tan($\frac{π}{6}+θ$)+$\sqrt{3}$tan($\frac{π}{6}-θ$)tan($\frac{π}{6}+θ$)=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查正切函数的两角和与差公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+ax2,g(x)=$\frac{b}{x}$+x,且直线y=-$\frac{1}{2}$是曲线y=f(x)的一条切线.
(Ⅰ)求实数a的值;
(Ⅱ)对任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求实数b的取值范围;
(Ⅲ)已知方程f(x)=cx有两个根x1,x2(x1<x2),若b=1时有g(x1+x2)+m+2c=0,求证:m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x∈R,log3(3x+1)>0,则(  )
A.p是假命题;¬p:?x∈R,log3(3x+1)>0B.p是假命题;¬p:?x∈R,log3(3x+1)≤0
C.p是真命题;¬p:?x∈R,log3(3x+1)>0D.p是真命题;¬p:?x∈R,log3(3x+1)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点(1,0)且与x轴垂直的直线方程是(  )
A.y=1B.x+1=0C.y=0D.x-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=2sinB,且a+b=$\sqrt{3}$c,则角C的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线y=x,y=x4所围成的图形的面积为$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}-\overrightarrow{AC}|=8$,则△ABC的面积的最大值为(  )
A.8B.16C.$10\sqrt{3}$D.$8\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)=$\frac{5}{9}$,则D($\sqrt{3}$Y+1)=(  )
A.2B.3C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是(  )
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“至少有一个红球”
C.“恰好有一个黑球”与“恰好有两个黑球”
D.“至少有一个黑球”与“都是红球”

查看答案和解析>>

同步练习册答案