精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}-\overrightarrow{AC}|=8$,则△ABC的面积的最大值为(  )
A.8B.16C.$10\sqrt{3}$D.$8\sqrt{6}$

分析 根据平面向量的数量积公式和余弦定理,求出b2+c2=80,再利用基本不等式得出bc的最大值,写出△ABC的面积,求其最大值即可.

解答 解:△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}-\overrightarrow{AC}|=8$,
设A、B、C所对边分别为a,b,c,
则c•b•cosA=a=8①;
所以△ABC的面积为:
S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc$\sqrt{1{-cos}^{2}A}$=$\frac{1}{2}$bc$\sqrt{1-\frac{64}{{{b}^{2}c}^{2}}}$=$\frac{1}{2}$$\sqrt{{{b}^{2}c}^{2}-64}$,
由余弦定理可得b2+c2-2bc•cosA=a2=64②,
由①②消掉cosA得b2+c2=80,
所以b2+c2≥2bc,
bc≤40,当且仅当b=c=2$\sqrt{10}$时取等号,
所以S△ABC=$\frac{1}{2}$$\sqrt{{{b}^{2}c}^{2}-64}$≤$\frac{1}{2}$$\sqrt{{40}^{2}-64}$=8$\sqrt{6}$,
所以△ABC面积的最大值为8$\sqrt{6}$.
故选:D.

点评 本题考查了平面向量数量积的运算、三角形面积公式以及基本不等式的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知棱长为1的正方体ABCD-A1B1C1D1中,P,Q是面对角线A1C1上的两个不同的动点(包括端点A1,C1).给出以下四个结论:
①存在P,Q两点,使BP⊥DQ;
②存在P,Q两点,使BP,DQ与直线B1C都成45°的角;
③若PQ=1,则四面体BDPQ的体积一定是定值;
④若PQ=1,则四面体BDPQ在该正方体六个面上的正投影的面积之和为定值.
以上各结论中,正确结论的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在三棱锥P-ABC中,PA⊥底面ABC,AD⊥平面PBC,其垂足D落在直线PB上.
(Ⅰ)求证:BC⊥PB;
(Ⅱ)若AD=$\sqrt{3}$,AB=BC=2,Q为AC的中点,求PA的长度以及二面角Q-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)+\sqrt{3}tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)$的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,M为PD的中点.
(Ⅰ)证明:PB∥平面ACM;  
(Ⅱ)求证:BC⊥PA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$tan({\frac{π}{4}-α})=3$,则tanα等于(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右顶点为A,离心率为e,且椭圆C过点$E({2e,\frac{b}{2}})$,以AE为直径的圆恰好经过椭圆的右焦点.
(1)求椭圆C的标准方程;
(2)已知动直线l(直线l不过原点且斜率存在)与椭圆C交于P,Q两个不同的点,且△OPQ的面积S=1,若N为线段PQ的中点,问:在x轴上是否存在两个定点E1,E2,使得直线NE1与NE2的斜率之积为定值?若存在,求出E1,E2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数a,b,c∈(0,1)且10a+9b=9,a+b+c=1,则当$\frac{10}{a}+\frac{1}{9b}$取最小值时,c的值为(  )
A.$\frac{5}{11}$B.$\frac{2}{11}$C.$\frac{1}{11}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知当x≥0时,函数y=x2与函数y=2x的图象如图所示,则当x≤0时,不等式2x•x2≥1的解集是[-4,-2].

查看答案和解析>>

同步练习册答案