精英家教网 > 高中数学 > 题目详情
17.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,M为PD的中点.
(Ⅰ)证明:PB∥平面ACM;  
(Ⅱ)求证:BC⊥PA.

分析 (I)连结OM,则由中位线定理得OM∥PB,故PB∥平面ACM;
(II)由BC⊥AC,BC⊥PO可得BC⊥平面PAC,于是BC⊥PA.

解答 证明:(I)连结OM,BD,
∵底面ABCD为平行四边形,
∴O是BD的中点,又M是PD的中点,
∴OM∥PB,又OM?平面ACM,PB?平面ACM,
∴PB∥平面ACM.
(II)AD=AC=1,∠ADC=45°,
∴AC⊥AD,即BC⊥AC.
∵PO⊥平面ABCD,BC?平面ABCD,
∴PO⊥BC,
又PO∩AC=O,PO?PAC,AC?平面PAC,
∴BC⊥平面PAC,又PA?平面PAC,
∴BC⊥PA.

点评 本题考查了线面平行,线面垂直的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若sinθ>0且cosθ<0,则θ是第二象限角,若sinθ•tanθ<0,则θ是第二、三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.
(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法?
(2)取出一个红球记2分,取出一个白球记1分,若取出4个球总分不少于5分,则有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=2sinB,且a+b=$\sqrt{3}$c,则角C的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等比数列{an}中,已知a1=2,a4=16.
(I)求数列{an}的通项公式;
(Ⅱ)数列{bn}是等差数列,a3=b3,a5=b5试求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}=|\overrightarrow{AB}-\overrightarrow{AC}|=8$,则△ABC的面积的最大值为(  )
A.8B.16C.$10\sqrt{3}$D.$8\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某同学逛书店,发现四本喜欢的书,决定至少买其中的一本,则购买方案有(  )
A.4种B.6种C.8种D.15种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积(  )
A.$\frac{8}{3}$B.$\frac{32}{3}$πC.$\frac{8}{3}$πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线l经过点A(3,-1),且在第四象限与两坐标轴围成等腰三角形,则直线l的方程为x-y-4=0.

查看答案和解析>>

同步练习册答案