精英家教网 > 高中数学 > 题目详情
9.某同学逛书店,发现四本喜欢的书,决定至少买其中的一本,则购买方案有(  )
A.4种B.6种C.8种D.15种

分析 根据题意,某同学“至少买其中的一本”,分买1本、2本、3本、4本书四种情况讨论,由分类计数原理计算可得答案.

解答 解:根据题意,分4种情况讨论:
①、买4本书中的1本,有C41=4种购买方案,
②、买4本书中的2本,有C42=6种购买方案,
③、买4本书中的3本,有C43=4种购买方案,
④、4本书全买,有1种情况,
则一共有4+6+4+1=15种购买方案,
故选:D.

点评 本题考查排列、组合的综合应用,注意“至少买其中的一本”的意义,进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知α的终边上的一点坐标为$({1,\sqrt{3}})$,则sinα为(  )
A.$\frac{{\sqrt{3}}}{2}$B.0C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.等差数列{an}中,若a1+a2=4,a9+a10=36,Sn是数列{an}的前n项和,则S10=100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,M为PD的中点.
(Ⅰ)证明:PB∥平面ACM;  
(Ⅱ)求证:BC⊥PA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知在各项为正的数列{an}中,a1=1,a2=2,${log_2}{a_{n+1}}+{log_2}{a_n}=n(n∈{N^*})$,则${a_1}+{a_2}+…{a_{2017}}-{2^{1010}}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右顶点为A,离心率为e,且椭圆C过点$E({2e,\frac{b}{2}})$,以AE为直径的圆恰好经过椭圆的右焦点.
(1)求椭圆C的标准方程;
(2)已知动直线l(直线l不过原点且斜率存在)与椭圆C交于P,Q两个不同的点,且△OPQ的面积S=1,若N为线段PQ的中点,问:在x轴上是否存在两个定点E1,E2,使得直线NE1与NE2的斜率之积为定值?若存在,求出E1,E2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.第一组样本点为(-5,-8.9),(-4,-7.2),(-3,-4.8),(-2,-3.3),(-1,-0.9)
第二组样本点为(1,8.9),(2,7.2),(3,4.8),(4,3.3),(5,0.9)
第一组变量的线性相关系数为r1,第一组变量的线性相关系数为r2,则(  )
A.r1>0>r2B.r2>0>r1C.r1<r2<0D.r2>r1>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知min{{a,b}=$\left\{\begin{array}{l}a,a≤b\\ b,a>b\end{array}\right.$f(x)=min{|x|,|x+t|},函数f(x)的图象关于直线x=-$\frac{1}{2}$对称;若“?x∈[1,+∞),ex>2mex”是真命题(这里e是自然对数的底数),则当实数m>0时,函数g(x)=f(x)-m零点的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知z=(m-1)+mi为纯虚数,则在复平面内,复数z=2-mi对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案