精英家教网 > 高中数学 > 题目详情
4.已知在各项为正的数列{an}中,a1=1,a2=2,${log_2}{a_{n+1}}+{log_2}{a_n}=n(n∈{N^*})$,则${a_1}+{a_2}+…{a_{2017}}-{2^{1010}}$=-3.

分析 ${log_2}{a_{n+1}}+{log_2}{a_n}=n(n∈{N^*})$,可得anan+1=2n.可得$\frac{{a}_{n+2}}{{a}_{n}}$=2.数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.利用等比数列的求和公式即可得出.

解答 解:∵${log_2}{a_{n+1}}+{log_2}{a_n}=n(n∈{N^*})$,
∴anan+1=2n
∴$\frac{{a}_{n+1}{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{n+1}}{{2}^{n}}$,可得$\frac{{a}_{n+2}}{{a}_{n}}$=2.
∴数列{an}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.
则${a_1}+{a_2}+…{a_{2017}}-{2^{1010}}$=(a1+a3+…+a2017)+(a2+a4+…+a2016)-21010
=$\frac{{2}^{1009}-1}{2-1}$+$\frac{2({2}^{1008}-1)}{2-1}$-21010=-3.
故答案为:-3.

点评 本题考查了等比数列的通项公式与求和公式、分组求和方法、对数运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.观察如图所示的”三角数阵”
(1)记第n(n≥2)行的第2个数为an,依次写出a 2,a3,a4,a5,归纳出an+1 与an 的关系式.
(2)用累加法求该数列的通项公式an(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不等式x2-3x<0的解集是A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a=(  )
A.-2B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等比数列{an}中,已知a1=2,a4=16.
(I)求数列{an}的通项公式;
(Ⅱ)数列{bn}是等差数列,a3=b3,a5=b5试求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的面积之和是(  )
A.3πa2B.4πa2C.5πa2D.6πa2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某同学逛书店,发现四本喜欢的书,决定至少买其中的一本,则购买方案有(  )
A.4种B.6种C.8种D.15种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.《九章算术》有如下问题:有上禾三秉(古代容量单位),中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾一秉各几何?依上文:设上、中、下禾一秉分别为x斗、y斗、z斗,设计如图所示的程序框图,则输出的x,y,z的值分别为(  )
A.$\frac{37}{4},\frac{17}{4},\frac{11}{4}$B.$\frac{11}{4},\frac{37}{4},\frac{17}{4}$C.$\frac{35}{4},\frac{17}{4},\frac{9}{4}$D.$\frac{35}{4},\frac{9}{4},\frac{17}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.近年来郑州空气污染教委严重,县随机抽取一年(365天)内100天的空气中PM2.5指数的监测数据,统计结果如表:
PM2.5[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染重度污染中重度污染重度污染
天数415183071115
记某企业每天由空气污染造成的经济损失为S(单位:元),PM2.5指数为x,当x在区间[0,100]内时,对该企业没有造成经济损失;当x在区间(100,300]内时,对该企业造成的经济损失成直线模型(当PM2.5指数为150时造成的经济损失为500元,当PM2.5指数为200时,造成的经济损失为700元);当PM2.5指数大于300时,造成的经济损失为2000元
(1)试写出S(x)的表达式
(2)试估计在本年内随机抽取一天,该天的经济损失大于500元且不超过900元的概率
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关    附:
P(k2≥k00.250.150.100.050.0250.0100.0050.001
k01.322.072.703.8415.026.637.8710.828
k2=$\frac{n(ac-bd)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
非重度污染重度污染合计
供暖季
非供暖季
合计100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等差数列{an}中,s30=930,d=2,则a3+a6+…+a30=330.

查看答案和解析>>

同步练习册答案