分析 (1)观察如图所示的”三角数阵”:第n(n≥2)行的第2个数为an,可得a 2,a3,a4,a5.由a3-a2=2,a4-a3=3,a5-a4=4,….可得:an+1-an=n;
(2)累加法求该数列的通项公式an(n≥2)如下:an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2即可得出.
解答 解:(1)观察如图所示的”三角数阵”:
第n(n≥2)行的第2个数为an,
a2=2,a3=4,a4=7,a5=11.
由a3-a2=2,a4-a3=3,a5-a4=4,….
可得:an+1-an=n.
(2)累加法求该数列的通项公式an(n≥2)如下:
an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=(n-1)+(n-2)+…+2+2
=$\frac{(n-1)n}{2}$+1.
即an=$\frac{{n}^{2}-n+2}{2}$.
点评 本题考查了等差数列的通项公式与求和公式、数列递推关系、累加求和方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{8}{9}$ | C. | $\frac{9}{10}$ | D. | $\frac{10}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 58 | 54 | 39 | 29 | 10 |
| ω | 1 | 4 | 9 | 16 | 25 |
| y | 58 | 54 | 39 | 29 | 10 |
| ${ω_i}-\overlineω$ | -10 | -7 | -2 | 5 | 14 |
| ${y_i}-\overline y$ | 20 | 16 | 1 | -28 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | a<b<c | C. | b<a<c | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com