精英家教网 > 高中数学 > 题目详情
1.已知命题p:?x∈R,log3(3x+1)>0,则(  )
A.p是假命题;¬p:?x∈R,log3(3x+1)>0B.p是假命题;¬p:?x∈R,log3(3x+1)≤0
C.p是真命题;¬p:?x∈R,log3(3x+1)>0D.p是真命题;¬p:?x∈R,log3(3x+1)≤0

分析 判断命题的真假,然后利用全称命题的否定是特称命题,写出结果即可.

解答 解:命题?x∈R,log3(3x+1)>0,显然是真命题;
因为全称命题的否定是特称命题,所以命题p:?x∈R,log3(3x+1)>0,p是真命题;
¬p:?x∈R,log3(3x+1)≤0.
故选:D.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.sin $\frac{13}{6}$π的值是(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知棱长为1的正方体ABCD-A1B1C1D1中,P,Q是面对角线A1C1上的两个不同的动点(包括端点A1,C1).给出以下四个结论:
①存在P,Q两点,使BP⊥DQ;
②存在P,Q两点,使BP,DQ与直线B1C都成45°的角;
③若PQ=1,则四面体BDPQ的体积一定是定值;
④若PQ=1,则四面体BDPQ在该正方体六个面上的正投影的面积之和为定值.
以上各结论中,正确结论的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2},
(1)求a,b的值;
(2)求关于x的不等式bx2-ax-2>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知奇函数f(x)在区间[2,9]上是增函数,在区间[3,8]上的最大值为9,最小值为2,则f(-8)-2f(-3)等于(  )
A.5B.-10C.10D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.现有2个男生,3个女生和1个老师共六人站成一排照相,若两端站男生,3个女生中有且仅有两人相邻,则不同的站法种数是24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在三棱锥P-ABC中,PA⊥底面ABC,AD⊥平面PBC,其垂足D落在直线PB上.
(Ⅰ)求证:BC⊥PB;
(Ⅱ)若AD=$\sqrt{3}$,AB=BC=2,Q为AC的中点,求PA的长度以及二面角Q-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$tan(\frac{π}{6}-θ)+tan(\frac{π}{6}+θ)+\sqrt{3}tan(\frac{π}{6}-θ)tan(\frac{π}{6}+θ)$的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数a,b,c∈(0,1)且10a+9b=9,a+b+c=1,则当$\frac{10}{a}+\frac{1}{9b}$取最小值时,c的值为(  )
A.$\frac{5}{11}$B.$\frac{2}{11}$C.$\frac{1}{11}$D.0

查看答案和解析>>

同步练习册答案