13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏÈýµãA£¬B£¬P£¨Î»ÓÚxÖáͬ²à£©ÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$
£¨¢ñ£©µ±AµÄ×ø±êΪ£¨0£¬1£©£¬AF1¡ÎBF2ʱ£¬Çó$\frac{|A{F}_{1}|}{|B{F}_{2}|}$µÄÖµ
£¨¢ò£©µ±Ö±ÏßAP¾­¹ýµã£¨-2£¬0£©£¬ÇÒBP¡ÍyÖáʱ£¬ÅжÏÖ±ÏßAF1ÓëBF2µÄλÖùØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºc=1£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$£¬b2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»ÇóµÃØ­AF1Ø­=$\sqrt{2}$£¬ÉèÖ±ÏßBF2µÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃBµã×ø±ê£¬¼´¿ÉÇóµÃ
Ø­BF2Ø­£¬¼´¿ÉÇóµÃ$\frac{|A{F}_{1}|}{|B{F}_{2}|}$µÄÖµ£»
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ£ºÉèÖ±ÏßAPµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃÖ±ÏßµÄбÂʹ«Ê½¼°Î¤´ï¶¨Àí¿ÉµÃ${k}_{A{F}_{1}}$-${k}_{B{F}_{2}}$=0£¬ÔòÖ±ÏßAF1ÓëBF2ƽÐУ®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºc=1£¬ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$£¬
b2=a2-c2=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£¬
ÓÉA£¨0£¬1£©£¬F1£¨-1£¬0£©£¬Ø­AF1Ø­=$\sqrt{2}$£¬
ÔòÖ±ÏßAF1µÄбÂÊk=$\frac{1-0}{0-£¨-1£©}$=1£¬ÔòÖ±ÏßBF2µÄ·½³Ìy=x-1£¬
$\left\{\begin{array}{l}{y=x-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=\frac{1}{3}}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$£¬
ÓÉA£¬B£¬P£¨Î»ÓÚxÖáͬ²à£©ÔòB£¨$\frac{4}{3}$£¬$\frac{1}{3}$£©£¬
Ø­BF2Ø­=$\sqrt{£¨\frac{4}{3}-1£©^{2}+£¨\frac{1}{3}-0£©^{2}}$=$\frac{\sqrt{2}}{3}$£¬
¡à$\frac{|A{F}_{1}|}{|B{F}_{2}|}$=$\frac{\sqrt{2}}{\frac{\sqrt{2}}{3}}$=3
$\frac{|A{F}_{1}|}{|B{F}_{2}|}$µÄÖµ3£»
£¨¢ò£©ÓÉÖ±ÏßAP¾­¹ýµã£¨-2£¬0£©£¬ÉèÖ±ÏßAP£ºy=k£¨x+2£©£¬ÉèA£¨x1£¬y1£©£¬P£¨x2£¬y2£©£¬
ÓÉBP¡ÍyÖᣬÔòB£¨-x2£¬y2£©£¬
$\left\{\begin{array}{l}{y=k£¨x+2£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2+8k2x+8k2-2=0£¬
x1+x2=-$\frac{8{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$£¬
ÔòAF1µÄбÂÊ${k}_{A{F}_{1}}$=$\frac{{y}_{1}-0}{{x}_{1}+1}$£¬BF2µÄбÂÊ${k}_{B{F}_{2}}$=$\frac{{y}_{2}}{-{x}_{2}-1}$£¬
Ôò${k}_{A{F}_{1}}$-${k}_{B{F}_{2}}$=$\frac{{y}_{1}}{{x}_{1}+1}$+$\frac{{y}_{2}}{{x}_{2}+1}$=$\frac{{y}_{1}£¨{x}_{2}+1£©+{y}_{2}£¨{x}_{1}+1£©}{£¨{x}_{1}+1£©£¨{x}_{2}+1£©}$£¬
ÓÉy2£¨x1+1£©+£¨x2+1£©y1=k2£¨x2+2£©£¨x1+1£©+£¨x2+1£©¡Ák1£¨x1+2£©=k[2x1x2+3£¨x1+x2£©+4]
=k[2¡Á$\frac{8{k}^{2}-2}{1+2{k}^{2}}$+3¡Á£¨-$\frac{8{k}^{2}}{1+2{k}^{2}}$£©+4]=0£¬
¡à${k}_{A{F}_{1}}$=${k}_{B{F}_{2}}$£¬
¡àÖ±ÏßAF1ÓëBF2ƽÐУ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Éèa£¾0£¬b£¾0£¬Ôò¡°a£¾b¡±ÊÇ¡°lna£¾lnb¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þD£®³äÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1=an+n+1£¬ÔòÊýÁÐ$\{\frac{a_n}{n}\}$µÄǰnÏîºÍΪ£¨¡¡¡¡£©
A£®$\frac{{{n^2}+5n}}{2}$B£®$\frac{{{n^2}+5n}}{4}$C£®$\frac{{{n^2}+3n}}{2}$D£®$\frac{{{n^2}+3n}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÈçͼÊÇ2015ÄêÈÕ¿¦ÔòÊоٰìÇàÉÙÄêÔ˶¯»áÉÏ£¬7λ²ÃÅÐΪijÎäÊõ¶ÓÔ±´ò³öµÄ·ÖÊýµÄ¾¥Ò¶Í¼£¬×ó±ßÊý×Ö±íʾʮλÊý×Ö£¬ÓÒ±ßÊý×Ö±íʾ¸öλÊý×Ö£®ÕâЩÊý¾ÝµÄÖÐλÊýÊÇ______£¬È¥µôÒ»¸ö×îµÍ·ÖºÍ×î¸ß·ÖºóËùÊ£Êý¾ÝµÄƽ¾ùÊýÊÇ£¨¡¡¡¡£©
A£®86.5£» 86.7B£®88£» 86.7C£®88£»86.8D£®86.5£»86.8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªiΪÐéÊýµ¥Î»£¬¸´ÊýzÂú×ãiz+2=z-2i£¬Ôò|z|=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èô$\frac{2+ai}{1+i}$=x+yi£¨a£¬x£¬y¡ÊR£©£¬ÇÒxy£¾1£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨2$\sqrt{2}$£¬+¡Þ£©B£®£¨-¡Þ£¬-2$\sqrt{2}$£©¡È£¨2$\sqrt{2}$£¬+¡Þ£©C£®£¨-2$\sqrt{2}$£¬2£©¡È£¨2$\sqrt{2}$£¬+¡Þ£©D£®£¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýf£¨x£©=lnx-2xµÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬2£©B£®$£¨-¡Þ£¬\frac{1}{2}£©$C£®$£¨0£¬\frac{1}{2}£©$D£®$£¨\frac{1}{2}£¬+¡Þ£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=loga£¨3-ax£©£®
£¨1£©µ±x¡Ê[0£¬2]ʱ£¬º¯Êýf£¨x£©ºãÓÐÒâÒ壬ÇóʵÊýaµÄȡֵ·¶Î§£®
£¨2£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[1£¬2]ÉÏΪ¼õº¯Êý£¬ÇÒ×î´óֵΪ2£¬Çó³öʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®É踴Êýz=2+i£¬Èô¸´Êý$z+\frac{1}{z}$µÄÐ鲿Ϊb£¬ÔòbµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{4}{5}$B£®$\frac{4}{5}i$C£®$\frac{6}{5}$D£®$\frac{6}{5}i$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸