·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºc=1£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$£¬b2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»ÇóµÃØAF1Ø=$\sqrt{2}$£¬ÉèÖ±ÏßBF2µÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃBµã×ø±ê£¬¼´¿ÉÇóµÃ
ØBF2Ø£¬¼´¿ÉÇóµÃ$\frac{|A{F}_{1}|}{|B{F}_{2}|}$µÄÖµ£»
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ£ºÉèÖ±ÏßAPµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃÖ±ÏßµÄбÂʹ«Ê½¼°Î¤´ï¶¨Àí¿ÉµÃ${k}_{A{F}_{1}}$-${k}_{B{F}_{2}}$=0£¬ÔòÖ±ÏßAF1ÓëBF2ƽÐУ®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºc=1£¬ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$£¬
b2=a2-c2=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£¬
ÓÉA£¨0£¬1£©£¬F1£¨-1£¬0£©£¬ØAF1Ø=$\sqrt{2}$£¬
ÔòÖ±ÏßAF1µÄбÂÊk=$\frac{1-0}{0-£¨-1£©}$=1£¬ÔòÖ±ÏßBF2µÄ·½³Ìy=x-1£¬
$\left\{\begin{array}{l}{y=x-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=\frac{1}{3}}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$£¬
ÓÉA£¬B£¬P£¨Î»ÓÚxÖáͬ²à£©ÔòB£¨$\frac{4}{3}$£¬$\frac{1}{3}$£©£¬
ØBF2Ø=$\sqrt{£¨\frac{4}{3}-1£©^{2}+£¨\frac{1}{3}-0£©^{2}}$=$\frac{\sqrt{2}}{3}$£¬
¡à$\frac{|A{F}_{1}|}{|B{F}_{2}|}$=$\frac{\sqrt{2}}{\frac{\sqrt{2}}{3}}$=3
$\frac{|A{F}_{1}|}{|B{F}_{2}|}$µÄÖµ3£»
£¨¢ò£©ÓÉÖ±ÏßAP¾¹ýµã£¨-2£¬0£©£¬ÉèÖ±ÏßAP£ºy=k£¨x+2£©£¬ÉèA£¨x1£¬y1£©£¬P£¨x2£¬y2£©£¬
ÓÉBP¡ÍyÖᣬÔòB£¨-x2£¬y2£©£¬
$\left\{\begin{array}{l}{y=k£¨x+2£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2+8k2x+8k2-2=0£¬
x1+x2=-$\frac{8{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$£¬
ÔòAF1µÄбÂÊ${k}_{A{F}_{1}}$=$\frac{{y}_{1}-0}{{x}_{1}+1}$£¬BF2µÄбÂÊ${k}_{B{F}_{2}}$=$\frac{{y}_{2}}{-{x}_{2}-1}$£¬
Ôò${k}_{A{F}_{1}}$-${k}_{B{F}_{2}}$=$\frac{{y}_{1}}{{x}_{1}+1}$+$\frac{{y}_{2}}{{x}_{2}+1}$=$\frac{{y}_{1}£¨{x}_{2}+1£©+{y}_{2}£¨{x}_{1}+1£©}{£¨{x}_{1}+1£©£¨{x}_{2}+1£©}$£¬
ÓÉy2£¨x1+1£©+£¨x2+1£©y1=k2£¨x2+2£©£¨x1+1£©+£¨x2+1£©¡Ák1£¨x1+2£©=k[2x1x2+3£¨x1+x2£©+4]
=k[2¡Á$\frac{8{k}^{2}-2}{1+2{k}^{2}}$+3¡Á£¨-$\frac{8{k}^{2}}{1+2{k}^{2}}$£©+4]=0£¬
¡à${k}_{A{F}_{1}}$=${k}_{B{F}_{2}}$£¬
¡àÖ±ÏßAF1ÓëBF2ƽÐУ®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ | D£® | ³äÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{{n^2}+5n}}{2}$ | B£® | $\frac{{{n^2}+5n}}{4}$ | C£® | $\frac{{{n^2}+3n}}{2}$ | D£® | $\frac{{{n^2}+3n}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 86.5£» 86.7 | B£® | 88£» 86.7 | C£® | 88£»86.8 | D£® | 86.5£»86.8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨2$\sqrt{2}$£¬+¡Þ£© | B£® | £¨-¡Þ£¬-2$\sqrt{2}$£©¡È£¨2$\sqrt{2}$£¬+¡Þ£© | C£® | £¨-2$\sqrt{2}$£¬2£©¡È£¨2$\sqrt{2}$£¬+¡Þ£© | D£® | £¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬2£© | B£® | $£¨-¡Þ£¬\frac{1}{2}£©$ | C£® | $£¨0£¬\frac{1}{2}£©$ | D£® | $£¨\frac{1}{2}£¬+¡Þ£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{4}{5}$ | B£® | $\frac{4}{5}i$ | C£® | $\frac{6}{5}$ | D£® | $\frac{6}{5}i$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com