精英家教网 > 高中数学 > 题目详情
5.函数f(x)=lnx-2x的单调递增区间为(  )
A.(-∞,2)B.$(-∞,\frac{1}{2})$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},+∞)$

分析 求出原函数的导函数,由导函数大于0求解x的范围得答案.

解答 解:由f(x)=lnx-2x,得
$f′(x)=\frac{1}{x}-2=\frac{1-2x}{x}$(x>0).
由f′(x)>0,得$\frac{1-2x}{x}>0$,得x$<\frac{1}{2}$.
∴函数f(x)=lnx-2x的单调递增区间为(0,$\frac{1}{2}$).
故选:C.

点评 本题考查利用导数研究函数的单调性,明确导函数的符号与原函数单调性间的关系是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=(x-a)|x-a|-x|x|+2a+1(a<0,)若存在x0∈[-1,1],使f(x0)≤0,则a的取值范围为[-3,-2+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$\left\{\begin{array}{l}{sinθ<0}\\{tanθ>0}\end{array}\right.$ 则角θ所在的象限是(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上三点A,B,P(位于x轴同侧)椭圆C的左、右焦点分别为F1(-1,0),F2(1,0),离心率为$\frac{\sqrt{2}}{2}$
(Ⅰ)当A的坐标为(0,1),AF1∥BF2时,求$\frac{|A{F}_{1}|}{|B{F}_{2}|}$的值
(Ⅱ)当直线AP经过点(-2,0),且BP⊥y轴时,判断直线AF1与BF2的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的1%,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如表:
理财金额1万元2万元3万元
乙理财相应金额的概率$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
丙理财相应金额的概率$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为X元,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.3名学生报名参加艺术体操、美术、计算机、航模四个课外兴趣小组,每人选报一种,则不同的报名种数有64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在复平面中,下列复数中所对应的点在第三象限的是(  )
A.-1+2iB.-1-2iC.3+2iD.3-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.式子$lg4+2lg5+{4^{-\frac{1}{2}}}$的化简结果为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,M,N是它与x轴的两个交点,D,C分别为它的最高点和最低点,点F(0,1)是线段MD的中点,三角形MDC的面积为$\frac{2π}{3}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)-m>0在$x∈[{-\frac{π}{36},\frac{π}{36}}]$上恒成立,求m的取值范围;
(Ⅲ)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再往上平移1个单位,得到函数y=g(x)的图象.求y=g(x)在区间[2009π,2017π]上的零点个数.

查看答案和解析>>

同步练习册答案