精英家教网 > 高中数学 > 题目详情
15.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,M,N是它与x轴的两个交点,D,C分别为它的最高点和最低点,点F(0,1)是线段MD的中点,三角形MDC的面积为$\frac{2π}{3}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)-m>0在$x∈[{-\frac{π}{36},\frac{π}{36}}]$上恒成立,求m的取值范围;
(Ⅲ)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再往上平移1个单位,得到函数y=g(x)的图象.求y=g(x)在区间[2009π,2017π]上的零点个数.

分析 (Ⅰ)由题意根据点F(0,1)是线段MD的中点,求得最高点和最低点的坐标,可得A的值,再根据三角形MDC的面积为$\frac{2π}{3}$,求得ω的值,再根据特殊点的坐标求得φ的值,可得函数f(x)的解析式,再利用正弦函数的单调性,求得f(x)的解析式.
(Ⅱ)若f(x)-m>0在$x∈[{-\frac{π}{36},\frac{π}{36}}]$上恒成立,求得f(x)的最小值,可得m的取值范围.
(Ⅲ)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据g(x)的周期性求得 y=g(x)在区间[2009π,2017π]上的零点个数.

解答 解:(Ⅰ)由点F(0,1)是线段MD的中点,可知A=2,三角形MDC的面积为$\frac{1}{2}×\frac{T}{2}×2×2=\frac{2π}{3}$,
所以$T=\frac{2π}{3},ω=\frac{2π}{T}=3$,设点D(x0,2),则M(-x0,0),
∴$4({x_0}-(-{x_0}))=\frac{2π}{3},{x_0}=\frac{π}{12}$,即$D(\frac{π}{12},2)$,所以$2sin(3×\frac{π}{12}+ϕ)=2$,
∵$0<ϕ<\frac{π}{2}$,∴$ϕ=\frac{π}{4}$,所以函数f(x)的解析式$f(x)=2sin(3x+\frac{π}{4})$
由$\frac{π}{2}+2kπ≤3x+\frac{π}{4}≤\frac{3π}{2}+2kπ(k∈Z)$得$\frac{π}{4}+2kπ≤3x≤\frac{5π}{4}+2kπ(k∈Z)$
得$\frac{π}{12}+\frac{2kπ}{3}≤x≤\frac{5π}{12}+\frac{2kπ}{3}(k∈Z)$,
所以函数f(x)的单调减区间为$[\frac{π}{12}+\frac{2kπ}{3},\frac{5π}{12}+\frac{2kπ}{3}](k∈Z)$.
(Ⅱ)因为不等式f(x)-m>0在$x∈[{-\frac{π}{36},\frac{π}{36}}]$上恒成立,
所以m<(f(x))min在$x∈[{-\frac{π}{36},\frac{π}{36}}]$,∵$x∈[{-\frac{π}{36},\frac{π}{36}}]$,∴$3x+\frac{π}{4}∈[{\frac{π}{6},\frac{π}{3}}].f{(x)_{min}}=2sin\frac{π}{6}=1$,即m<1.
(Ⅲ)依题意得$g(x)=f(x+\frac{π}{6})+1=2cos(3x+\frac{π}{4})+1$,
其最小正周期$T=\frac{2π}{3}$,由$2cos(3x+\frac{π}{4})+1=0$,得$cos(3x+\frac{π}{4})=-\frac{1}{2}$,
所以$3x+\frac{π}{4}=2kπ±\frac{2π}{3},k∈Z$,即$x=\frac{2kπ}{3}+\frac{5π}{36},k∈Z$或$x=\frac{2kπ}{3}-\frac{11π}{36},k∈Z$,
区间[2009π,2017π]的长度为12个周期,
若零点不在区间的端点,则每个周期有2个零点;
若零点在区间的端点,则仅在区间左或右端点处得一个区间含3个零点,其它区间仍是2个零点;
故当$2009π≠\frac{2kπ}{3}+\frac{5π}{36},k∈Z$且$2009π≠\frac{2kπ}{3}-\frac{11π}{36},k∈Z$,故有12×2=24个.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由特殊点的坐标求出ω 和φ的值;正弦函数的单调性、周期性、零点,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=lnx-2x的单调递增区间为(  )
A.(-∞,2)B.$(-∞,\frac{1}{2})$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数$\frac{5i}{{2+{i^9}}}$的共轭复数所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z=2+i,若复数$z+\frac{1}{z}$的虚部为b,则b等于(  )
A.$\frac{4}{5}$B.$\frac{4}{5}i$C.$\frac{6}{5}$D.$\frac{6}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,AB=3,AC=2,∠BAC=60°,点P是△ABC内一点(含边界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则|$\overrightarrow{AP}$|的最大值为(  )
A.$\frac{2\sqrt{7}}{3}$B.$\frac{8}{3}$C.$\frac{2\sqrt{19}}{3}$D.$\frac{2\sqrt{13}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.平面直角坐标系中,已知O为坐标原点,点A、B的坐标分别为(1,1)、(-3,3).若动点P满足$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,其中λ、μ∈R,且λ+μ=1,则点P的轨迹方程为(  )
A.x-y=0B.x+y=0C.x+2y-3=0D.(x+1)2+(y-2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知二项分布ξ~B(4,$\frac{1}{2}$),则该分布列的方差Dξ值为(  )
A.4B.3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x>0,则$2+3x+\frac{4}{x}$的最小值等于2+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x}-2\;\;,\;x≤-1,\;\\(x-2)(|x|-1)\;,x>-1.\end{array}\right.$,则f(f(-2))=0,若f(x)≥2,则x的取值范围为x≥3或x=0或x≤-2.

查看答案和解析>>

同步练习册答案