精英家教网 > 高中数学 > 题目详情
20.某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的1%,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如表:
理财金额1万元2万元3万元
乙理财相应金额的概率$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
丙理财相应金额的概率$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为X元,求X的分布列与数学期望.

分析 (1)根据古典概型的概率公式,计算乙、丙理财金额之和不少于5万元的概率值;
(2)根据X的所有可能取值,计算对应的概率值,
写出随机变量X的分布列,计算数学期望值.

解答 解:(1)设乙、丙理财金额分别为ξ万元、η万元,
则乙、丙理财金额之和不少于5万元的概率为
P(ξ+η≥5)=P(ξ=2)P(η=3)+P(ξ=3)P(η=2)+P(ξ=3)P(η=2)
=$\frac{1}{3}$×$\frac{1}{6}$+$\frac{1}{3}$×$\frac{1}{3}$+$\frac{1}{3}$×$\frac{1}{6}$=$\frac{2}{9}$;---------(4分)
(2)X的所有可能的取值为300,400,500,600,700;
P(X=300)=P(ξ=1)P(η=1)=$\frac{1}{3}$×$\frac{1}{2}$=$\frac{1}{6}$,
P(X=400)=P(ξ=1)P(η=2)+P(ξ=2)P(η=1)=$\frac{1}{3}$×$\frac{1}{3}$+$\frac{1}{3}$×$\frac{1}{2}$=$\frac{5}{18}$,
P(X=500)=P(ξ=1)P(η=3)+P(ξ=3)•P(η=1)+P(ξ=2)P(η=2)=$\frac{1}{3}$×$\frac{1}{6}$+$\frac{1}{3}$×$\frac{1}{2}$+$\frac{1}{3}$×$\frac{1}{3}$=$\frac{1}{3}$,
P(X=600)=P(ξ=2)P(η=3)+P(ξ=3)P(η=2)=$\frac{1}{3}$×$\frac{1}{6}$+$\frac{1}{3}$×$\frac{1}{3}$=$\frac{1}{6}$,
P(X=700)=P(ξ=3)P(η=3)=$\frac{1}{3}$×$\frac{1}{6}$=$\frac{1}{18}$,
所以X的分布列为

X300400500600700
P$\frac{1}{6}$$\frac{5}{18}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{18}$
(10分)
数学期望为E(X)=300×$\frac{1}{6}$+400×$\frac{5}{18}$+500×$\frac{1}{3}$+600×$\frac{1}{6}$+700×$\frac{1}{18}$=$\frac{1400}{3}$.----------------(12分)

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设a∈N*,a<28,则等式$(28-a)(29-a)…(35-a)=A_{35-a}^m$中m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设z=1-i(为虚数单位),则${z^2}+\frac{2}{z}$=(  )
A.1-iB.-1+iC.-1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知i为虚数单位,复数z满足iz+2=z-2i,则|z|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合M={-2,2},N={x|$\frac{1}{x}$<2},则下列结论正确的是(  )
A.N⊆MB.M⊆NC.N∩M={2}D.N∪M=R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=lnx-2x的单调递增区间为(  )
A.(-∞,2)B.$(-∞,\frac{1}{2})$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-$\frac{1}{2}$)f($\frac{1}{2}$)<0,则方程f(x)=0在[-1,1]内(  )
A.可能有3个实数根B.可能有2个实数根C.有唯一的实数根D.没有实数根

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{{\begin{array}{l}{-{{log}_2}(3-x),x<2}\\{{2^{x-2}}-1,x≥2}\end{array}}$,若f(a)=1,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,AB=3,AC=2,∠BAC=60°,点P是△ABC内一点(含边界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则|$\overrightarrow{AP}$|的最大值为(  )
A.$\frac{2\sqrt{7}}{3}$B.$\frac{8}{3}$C.$\frac{2\sqrt{19}}{3}$D.$\frac{2\sqrt{13}}{3}$

查看答案和解析>>

同步练习册答案