精英家教网 > 高中数学 > 题目详情
10.设a∈N*,a<28,则等式$(28-a)(29-a)…(35-a)=A_{35-a}^m$中m=8.

分析 利用排列数计算公式即可得出.

解答 解:等式$(28-a)(29-a)…(35-a)=A_{35-a}^m$,a∈N*,a<28,
∴${A}_{35-a}^{8}$=${A}_{35-a}^{m}$.
∴m=8.
故答案为:8.

点评 本题考查了排列数计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,D为BC上靠近B点的三等分点,连接AD,若$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则m+n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=-x|x|+2x+1,则下列结论正确的是(  )
A.f(x)是偶函数
B.f(x)的递减区间是(-1,1)
C.若方程f(x)+k=0有三个不同的实数根,则-2≤k≤0
D.任意的a>0,$f(lga)+f(lg\frac{1}{a})=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若i为虚数单位,设复数z满足|z|=1,则|z-1+i|的最大值为(  )
A.$\sqrt{2}$-1B.2-$\sqrt{2}$C.$\sqrt{2}$+1D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{6x}{{1+{x^2}}}$在区间[0,3]的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=(x-a)|x-a|-x|x|+2a+1(a<0,)若存在x0∈[-1,1],使f(x0)≤0,则a的取值范围为[-3,-2+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于函数:①f(x)=4x+$\frac{1}{x}$-5,②f(x)=|log2x|-($\frac{1}{2}$)x,③$f(x)=lnx-\frac{1}{x}$,判断如下两个命题的真假:命题甲:f(x)在区间(1,2)上是增函数;命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1;能使命题甲、乙均为真的函数的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC中,A=$\frac{π}{2}$,a=2,b=$\sqrt{3}$,则B=(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的1%,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如表:
理财金额1万元2万元3万元
乙理财相应金额的概率$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
丙理财相应金额的概率$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为X元,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案