精英家教网 > 高中数学 > 题目详情
20.在△ABC中,D为BC上靠近B点的三等分点,连接AD,若$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则m+n=1.

分析 利用向量的三角形法则和向量共线定理即可得出.

解答 解:$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$,
∵$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,
∴m=$\frac{2}{3}$,n=$\frac{1}{3}$,
∴m+n=1,
故答案为:1

点评 本题考查了向量的三角形法则和向量共线定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.对于函数$f(x)=sin(x+\frac{3π}{2})cos(\frac{π}{2}+x)$,给出下列四个结论:
(1)函数f(x)的最小正周期为π;    
(2)若f(x1)=-f(x2),则x1=-x2
(3)f(x)的图象关于直线$x=-\frac{π}{4}$对称;
(4)f(x)在$[{\frac{π}{4},\frac{3π}{4}}]$上是减函数.
其中正确的个数为(  )
A.2B.4C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义min$\left\{{a,b}\right\}=\left\{{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}}$,若实数x,y满足$\left\{{\begin{array}{l}{x-y-3≤0}\\{3x-y-9≥0}\\{y≤3}\end{array}}$,设z=min{2x-y+4,x+y+6},则z的取值范围是(  )
A.[9,11]B.[9,12]C.[9,13]D.[9,14]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,
(1)求函数f(x)的解析式;
(2)求f(-$\frac{5π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判.每局比赛结束时,负的一方在下局当裁判,假设每局比赛中,甲胜乙的概率为$\frac{1}{2}$,甲胜丙、乙胜丙的概率都是$\frac{2}{3}$,各局比赛的结果相互独立,第一局甲当裁判.
(1)求第3局甲当裁判的概率;
(2)记前4局中乙当裁判的次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.经过圆x2+2x+y2=0的圆心,且与直线x+y-2=0垂直的直线方程是x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知M为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$右支上一点,A,F分别为双曲线C左顶点和的右焦点,MF=AF,若∠MFA=60°,则双曲线C的离心率为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图2,“六芒星”是由两个全等正三角形组成,中心重合于点O且三组对边分别平行.点A,B是“六芒星”(如图1)的两个顶点,动点P在“六芒星”上(内部以及边界),若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,则x+y的取值范围是(  )
A.[-4,4]B.$[{-\sqrt{21},\sqrt{21}}]$C.[-5,5]D.[-6,6]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a∈N*,a<28,则等式$(28-a)(29-a)…(35-a)=A_{35-a}^m$中m=8.

查看答案和解析>>

同步练习册答案