分析 (1)第2局中可能是乙当裁判,也可能是丙当裁判,求出对应概率值,
由此能求出第3局甲当裁判的概率;
(2)由题意X可能的取值为0,1,2,分别求出相应的概率,
由此能求出X的概率分布与数学期望.
解答 解:(1)第2局中可能是乙当裁判,其概率为$\frac{1}{3}$,
也可能是丙当裁判,其概率为$\frac{2}{3}$,
∴第3局甲当裁判的概率为$\frac{1}{3}$×$\frac{2}{3}$+$\frac{2}{3}$×$\frac{1}{3}$=$\frac{4}{9}$;…(4分)
(2)由题意X可能的取值为0,1,2;…(5分)
P(X=0)=$\frac{2}{3}$×$\frac{1}{2}$×$\frac{2}{3}$=$\frac{2}{9}$,…(6分)
P(X=2)=$\frac{1}{3}$×($\frac{2}{3}$×$\frac{1}{2}$+$\frac{1}{3}$×$\frac{1}{3}$)=$\frac{4}{27}$,…(7分)
P(X=1)=1-P(X=0)-P(X=2)=1-$\frac{2}{9}$-$\frac{4}{27}$=$\frac{17}{27}$;…(8分)
∴X的概率分布列为:
| X | 0 | 1 | 2 |
| P | $\frac{2}{9}$ | $\frac{17}{27}$ | $\frac{4}{27}$ |
点评 本题考查了古典概率的求法问题,也考查了离散型随机变量的分布列和数学期望的计算问题,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com