在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.
(1) 求点P的轨迹C的方程;
(2) 若Q是轨迹C上异于点P的一个点,且
=λ
,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
![]()
解:(1) 设点P(x,y)为所求轨迹上的任意一点,则由kOP+kOA=kPA得
,
整理得轨迹C的方程为y=x2(x≠0且x≠-1).
![]()
(2) 设P(x1,x
),Q(x2,x
),M(x0,y0),
由
可知直线PQ∥OA,则kPQ=kOA,
故
,即x2+x1=-1,
由O、M、P三点共线可知,
=(x0,y0)与
=(x1,x
)共线,
∴ x0x
-x1y0=0,
由(1)知x1≠0,故y0=x0x1,
同理,由
=(x0+1,y0-1)与
=(x2+1,x
-1)共线可知(x0+1)(x
-1)-(x2+1)(y0-1)=0,
即(x2+1)[(x0+1)·(x2-1)-(y0-1)]=0,
由(1)知x2≠-1,故(x0+1)(x2-1)-(y0-1)=0,
将y0=x0x1,x2=-1-x1代入上式得(x0+1)(-2-x1)-(x0x1-1)=0,
整理得-2x0(x1+1)=x1+1,
由x1≠-1得x0=-
,
由S△PQA=2S△PAM,得到QA=2AM,
∵ PQ∥OA,
∴ OP=2OM,
∴![]()
∴ x1=1,
∴ P的坐标为(1,1).
科目:高中数学 来源: 题型:
给定椭圆C:
+
=1(a>b>0),称圆心在原点O、半径是
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
,0),其短轴的一个端点到点F的距离为
.
(1) 求椭圆C和其“准圆”的方程;
(2) 若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求
·
的取值范围;
(3) 在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
设A1、A2与B分别是椭圆E:
=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.
(1) 求证:
+
=1;
(2) P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-
,求椭圆E的方程;
(3) 直线l与椭圆E交于M、N两点,且
=0,试判断直线l与圆C的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且与y轴相交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com