分析 an+1=2an+2n(n≥1),变形为$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,利用等差数列的通项公式即可得出.
解答 解:an+1=2an+2n(n≥1),
∴$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,
∴数列$\{\frac{{a}_{n}}{{2}^{n}}\}$是等差数列,首项为$\frac{3}{2}$,公差为$\frac{1}{2}$.
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{3}{2}$+$\frac{1}{2}(n-1)$,
an=(n+2)•2n-1.
点评 本题考查了递推公式、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{3}π$ | B. | $\frac{16}{9}π$ | C. | $\frac{4}{3}π$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2019<x<0} | B. | {x|x<-2019} | C. | {x|-2019<x<-2015} | D. | {x|-2011<x<0} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ab | B. | $\frac{1}{4}$bc | C. | $\frac{1}{2}$bc | D. | $\frac{1}{2}$ac |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com