精英家教网 > 高中数学 > 题目详情
11.数列{an),a1=3,an+1=2an+2n(n≥1),求an

分析 an+1=2an+2n(n≥1),变形为$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,利用等差数列的通项公式即可得出.

解答 解:an+1=2an+2n(n≥1),
∴$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,
∴数列$\{\frac{{a}_{n}}{{2}^{n}}\}$是等差数列,首项为$\frac{3}{2}$,公差为$\frac{1}{2}$.
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{3}{2}$+$\frac{1}{2}(n-1)$,
an=(n+2)•2n-1

点评 本题考查了递推公式、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在四棱锥P-ABCD中,四条侧棱长均为2,底面ABCD为正方形,E为PC的中点,且∠BED=90°,若该四棱锥的所有顶点都在同一球面上,则该球的表面积是(  )
A.$\frac{16}{3}π$B.$\frac{16}{9}π$C.$\frac{4}{3}π$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=(1+ax2)ex(a≠0)在R上有极值点,则实数a的取值范围是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α-β=$\frac{π}{3}$,cosα+cosβ=$\frac{1}{5}$,则cos$\frac{α+β}{2}$=$\frac{\sqrt{3}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=1,$\frac{{a}_{n}}{{a}_{n+1}}$=$\frac{n}{n+1}$(n=1,2,3…).
(1)求a2,a3,a4,a5,并猜想通项公式an
(2)根据(1)中的猜想,有下面的数阵:
S1=a1
S2=a2+a3
S3=a4+a5+a6
S4=a7+a8+a9+a10
S5=a11+a12+a13+a14+a15
试求S1,S1+S3,S1+S3+S5,并猜想S1+S3+S5+…+S2n-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)是定义在区间(-∞,0)上的可导函数,其导函数为f′(x),且满足xf′(x)>-2f(x),则不等式$\frac{(x+2015)^{2}f(x+2015)}{16}$<f(-4)的解集为(  )
A.{x|-2019<x<0}B.{x|x<-2019}C.{x|-2019<x<-2015}D.{x|-2011<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,A,B,C的对边分别为a,b,c,且b=2,2cos2$\frac{B}{2}$-sinB=1,若满足条件的△ABC恰有两个,则a的取值范围是(2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知长方体ABCD-A1B1C1D1的长、宽、高分别为a,b,c,点E,F,G分别在线段BC1,A1D,A1B1上运动(如图甲).当三棱锥G-AEF的俯视图如图乙所示时,三棱锥G-AEF的侧视图面积等于(  )
A.$\frac{1}{4}$abB.$\frac{1}{4}$bcC.$\frac{1}{2}$bcD.$\frac{1}{2}$ac

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足an+1=3an+5×2n+4,a1=1,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案