| A. | {x|-2019<x<0} | B. | {x|x<-2019} | C. | {x|-2019<x<-2015} | D. | {x|-2011<x<0} |
分析 令g(x)=x2f(x),求导g′(x)=x2f′(x)+2xf(x)=x(xf′(x)+2f(x)),从而可得g(x)在(-∞,0)上是减函数,从而解得.
解答 解:令g(x)=x2f(x)(x<0),
g′(x)=x2f′(x)+2xf(x)=x(xf′(x)+2f(x)),
∵2f(x)+xf′(x)>0,x<0;
∴x(xf′(x)+2f(x))<0,
∴g(x)=x2f(x)在(-∞,0)上是减函数,
∴(x+2015)2f(x+2015)<16f(-4)可化为
(x+2015)2f(x+2015)<16f(-4)=(-4)2f(-4),
∴0>x+2015>-4,
故-2015>x>-2019;
故选:C.
点评 本题考查了导数的综合应用及单调性的应用.
科目:高中数学 来源: 题型:选择题
| A. | 外心 | B. | 内心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$) | B. | (0,1) | C. | (1,+∞) | D. | (e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com